Bertha: Tunneling
Through the Network API

Akshay Narayan Aurojit Panda Mohammad Alizadeh
Hari Balakrishnan Arvind Krishnamurthy Scott Shenker

MIT, NYU, UW, UC Berkeley, ICSI

Recent Developments

NetCache: Balancing Key-Value Stores
with Fast In-Network Caching

Xin Jin', Xiaozhou Li*, Haoyu Zhang’, Robert Soulé**,

Jeongkeun Lee?, Nate Foster?”, Changhoon Kim?, Ion Stoica®

Johns Hopkins University, 2Barefoot Networks, *Princeton University,
*Universita della Svizzera italiana, >Cornell University, © UC Berkeley

Designing Distributed Systems Using
Approximate Synchrony in Data Center Networks

Dan R. K. Ports Jialin Li Vincent Liu Naveen Kr. Sharma Arvind Krishnamurthy
University of Washington

Introducing mcrouter: A memcached protocol router for scaling memcached
deployments

New Network Infrastructure

New: Network devices with programmable dataplane

XN/
oo Il
oo Il

New: Application functionality in the network

Architectural API

APIls encode traditional end-to-end semantics

IIIII

//// Lee) QUIC

Sockets
DPDK

~ I
/7]

vee Il

What would an API that encoded
application offload semantics look like?

Want: An Interface

Application
Offloads Today

Proposeded
Interface

Application
Developer

Offload
Developer

System
Administrator

Network
Operator

Offload-Aware
Implementation
(Sharded KV-Store)

Offload Implementation
(P4 Sharding
Implementation)

Implementations

declares sequence of
offloads

Platform Configured with
Offloads
(Configure server
for KV-store)

Route
Traffic through offloads
(Configure
SDN Control Plane)

Offload implementation
and
metadata

Application
Developer

Offload
Developer

Offload Deployment

Offload deployment
scenarios

Server

Client

R/ ///A

— (o
X7/

Out-of-Band Coordination

Server

Switch config + SDN policy

/ A‘, Offload developer

Application developer ‘O Network operator

\ z System administrator
v

What would an API that encoded
application offload semantics look like?

Our Answer: Chunnels + Bertha

Chunnels 10

Bertha

\‘

Bertha

AR/ ///A
- W

Chunnel(s) =

Chunnels

From the application’s perspective,
in-machine and in-network offloads are the same

Application Chunnel

P4 Switch

Bertha

Chunnel Properties

XX/ /)
/A [/
ceo AR/ ///A

Fallback: Functionality implementable by end-host application software

12

Chunnel Properties

“e e Illll “e e Illlf
Fallback: Portability R/ XX/}
[/ cee fIlll

XX/ /4
L/ /// XX ///]
cee R ////A

Application Relevance

Chunnel Properties

Fallback: Portability

14

Application relevance: Safety

HTTP/2

Bertha Connection

——
¢

Composable

Bertha Roles

Discovery: Figure out which Chunnel implementations are available
(e.g., eBPF, Kernel)

Negotiation: Decide which implementation to use.

Application init() / teardown() Network

Chunnels

n Bertha Kernel, eBPF P4 Switch

Discovery
Negotiation

Negotiation

Application

Considerations:
Developer preference
Offload availability
Network policy

“I need an
encryption

Encrypt Chunnel”

Bertha

Discovery
Negotiation

“I implement
encryption”

16

Kernel, eBPF SmartNIC

Cool Implications

17

Research Directions 18

Optimization Scheduling
Automatic reordering/substitution of Multiplexing offloads
parts of the Chunnel specification between connections and applications

Application init() / teardown() Network

Chunnels

= Bertha Kernel, eBPF P4 Switch

Discovery
Negotiation

Chunnel Optimization

HTTP/2

To use these offloads,
must to traverse PCle 3x

19

Encryption, TCP
Chunnel Implementations

SmartNIC

Chunnel Optimization

HTTP/2 D

Reordering reduces
data movement

20

Similar to optimizations in
Weld, TensorFlow, ONNX

Encryption, TCP
Chunnel Implementations

SmartNIC

Client Push

Server

—
o

P4 Switch

NetAdvisor Chunnel

Client

R ////A

- — ~
R ////A
—————
R ////A
-

End

Application init() / teardown() Network

Chunnels

Bertha Kernel, eBPF P4 Switch

Discovery
Negotiation

Contact:

mailto:akshayn@mit.edu
mailto:akshayn@mit.edu

