Bertha: Tunneling Through the Network API

Akshay Narayan

Aurojit Panda

Mohammad Alizadeh

Hari Balakrishnan

Arvind Krishnamurthy

Scott Shenker

MIT, NYU, UW, UC Berkeley, ICSI

Recent Developments

NetCache: Balancing Key-Value Stores with Fast In-Network Caching

Xin Jin¹, Xiaozhou Li², Haoyu Zhang³, Robert Soulé^{2,4}, Jeongkeun Lee², Nate Foster^{2,5}, Changhoon Kim², Ion Stoica⁶

¹Johns Hopkins University, ²Barefoot Networks, ³Princeton University, ⁴Università della Svizzera italiana, ⁵Cornell University, ⁶ UC Berkeley

Designing Distributed Systems Using Approximate Synchrony in Data Center Networks

Dan R. K. Ports Jialin Li Vincent Liu Naveen Kr. Sharma Arvind Krishnamurthy
University of Washington

Introducing mcrouter: A memcached protocol router for scaling memcached deployments

New: Network devices with programmable dataplane

New: Application functionality in the network

Architectural API

APIs encode traditional end-to-end semantics

What would an API that encoded application offload semantics look like?

Want: An Interface

Offload Deployment

Out-of-Band Coordination

Switch config + SDN policy

Application developer

Offload developer

Network operator

System administrator

What would an API that encoded application offload semantics look like?

Our Answer: Chunnels + Bertha

Chunnels 11

From the application's perspective, in-machine and in-network offloads are the same

Chunnel Properties

Fallback: Functionality implementable by end-host application software

Chunnel Properties

Fallback: Portability

Chunnel Properties

Fallback: Portability

Application relevance: Safety

Discovery: Figure out which Chunnel implementations are available (e.g., eBPF, Kernel)

Negotiation: Decide which implementation to use.

Negotiation

Cool Implications

Research Directions

Chunnel Optimization

To use these offloads, must to traverse PCIe 3x

Chunnel Optimization

Reordering reduces data movement

Similar to optimizations in Weld, TensorFlow, ONNX

Encryption, TCP
Chunnel Implementations

Client Push

End 22

Contact: akshayn@mit.edu