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Recent Developments

NetCache: Balancing Key-Value Stores
with Fast In-Network Caching

Xin Jin', Xiaozhou Li*, Haoyu Zhang’, Robert Soulé**,

Jeongkeun Lee?, Nate Foster?”, Changhoon Kim?, Ion Stoica®

Johns Hopkins University, 2Barefoot Networks, *Princeton University,
*Universita della Svizzera italiana, >Cornell University, © UC Berkeley

Designing Distributed Systems Using
Approximate Synchrony in Data Center Networks

Dan R. K. Ports  Jialin Li  Vincent Liu  Naveen Kr. Sharma  Arvind Krishnamurthy
University of Washington

Introducing mcrouter: A memcached protocol router for scaling memcached
deployments



New Network Infrastructure

New: Network devices with programmable dataplane
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New: Application functionality in the network



Architectural API

APIls encode traditional end-to-end semantics

IIIII

//// Lee ) QUIC

Sockets
DPDK

~ I
/7]

vee Il



What would an API that encoded
application offload semantics look like?



Want: An Interface
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Offload Deployment

Offload deployment
scenarios

Server

Client
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Out-of-Band Coordination

Server

Switch config + SDN policy
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What would an API that encoded
application offload semantics look like?

Our Answer: Chunnels + Bertha



Chunnels 10

Bertha
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Chunnels

From the application’s perspective,
in-machine and in-network offloads are the same

Application Chunnel

P4 Switch

Bertha




Chunnel Properties
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Fallback: Functionality implementable by end-host application software
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Chunnel Properties
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Application Relevance



Chunnel Properties

Fallback: Portability
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Application relevance: Safety
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Bertha Roles

Discovery: Figure out which Chunnel implementations are available
(e.g., eBPF, Kernel)

Negotiation: Decide which implementation to use.
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Negotiation

Application

Considerations:
Developer preference
Offload availability
Network policy

“I need an
encryption

Encrypt Chunnel”

Bertha

Discovery
Negotiation

“I implement
encryption”
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Kernel, eBPF SmartNIC




Cool Implications
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Research Directions 18

Optimization Scheduling
Automatic reordering/substitution of Multiplexing offloads
parts of the Chunnel specification between connections and applications
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Chunnel Optimization

HTTP/2

To use these offloads,
must to traverse PCle 3x
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Encryption, TCP
Chunnel Implementations

SmartNIC



Chunnel Optimization

HTTP/2 D

Reordering reduces
data movement
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Similar to optimizations in
Weld, TensorFlow, ONNX

Encryption, TCP
Chunnel Implementations

SmartNIC



Client Push
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End

Application init() / teardown() Network

Chunnels

Bertha Kernel, eBPF P4 Switch

Discovery
Negotiation

Contact:


mailto:akshayn@mit.edu
mailto:akshayn@mit.edu

