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Abstract
The rise of proprietary and novel congestion control algorithms

(CCAs) opens questions about the future of Internet utilization,

latency, and fairness. However, fully analyzing how novel CCAs

impact these properties requires understanding the inner workings

of these algorithms. We thus aim to reverse-engineer deployed

CCAs’ behavior from collected packet traces to facilitate analyzing

them.We present Abagnale, a program synthesis pipeline that helps

users automate the reverse-engineering task. Using Abagnale, we

discover simple expressions capturing the behavior of 9 of the 16

CCAs distributed with the Linux kernel and analyze 7 CCAs from

a graduate networking course.
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1 Introduction
Analyzing congestion control algorithms (CCAs) is vital to our

understanding of Internet traffic stability, fairness, and performance.

For example, past analyses have shown that AIMD approaches

such as Reno will converge to fair bandwidth shares [18] and that

Google’s BBRv1 will converge to unfair bandwidth shares in many

scenarios [63]. Recent work has further introduced model checking

to CCAs [3], providing the ability to prove performance guarantees

for input CCAs given complex edge case scenarios. Of course, these

analysis techniques rely on access to a CCA’s implementation.
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Unfortunately, implementations of CCAs are not universally

available. Especially given the rise of user-space CCA implementa-

tions [43, 53], it is easier than ever to develop and deploy a propri-

etary CCA without revealing its implementation details. Indeed, re-

searchers have both observed [11, 51] and publicly claimed [65] pro-

prietary CCA implementations. Further, evenwith access to a CCA’s

implementation, many such implementations contain datapath-

specific implementation details that obscure their behavior [53],

making it difficult for analysts to determine their nature.

Thus, we seek to facilitate CCA analyses by synthesizing simple

implementations directly from packet traces. These simple imple-

mentations make the analysis of CCAs with known (but complex)

implementations easier, while making analysis of unknown CCAs

possible.
Generating a program based on a series of observed, example

outputs is a form of program synthesis [31, 32] (specifically, a class
of synthesis called programming-by-example, or ‘PBE’). General-

purpose PBE remains out of scope for the state of the art: today, the

most effective PBE tools are specialized to a particular domain or

language framework. We scope our design to synthesize classically-
designed congestion control algorithms. We formalize what it means

for a CCA to be ‘classically designed’ in §3.3, but at a high level,

this means that it can be constructed using a domain-specific lan-

guage derived from the set of existing Linux Kernel supported

CCAs. For example, we aim to design a tool that could reverse

engineer TCP Westwood if it were brand new to the CCA land-

scape, since Westwood can be constructed using the same language

as TCP Reno. Since most novel CCAs on the Internet today are

variants or extensions of classical algorithms (§5), ‘classically de-

signed’ algorithms are a useful category of algorithms to specialize

in. Importantly, however, this design excludes from our scope CCAs

with non-deterministic behavior (including those using machine

learning techniques).

The reason that program synthesizers target domain-specific

regimes is tractability. At their core, all synthesizers frame a search

space using a domain-specific language (DSL) defining the ‘set of

all possible programs’ and aim to find a needle in this haystack: a

program that, given the pre-specified inputs, produces the pre-

specified outputs. Constraining the size of the DSL makes the

haystack smaller. Nonetheless, even a constrained haystack is still
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large: even when constrained to CCAs following a ‘classical’ DSL,

there are 10
150

possible programs to explore.

To meet this challenge, we design Abagnale, a program synthesis

pipeline that utilizes domain knowledge to produce approximate

expressions representing CCAs in our scope. Abagnale cuts down

on the intractability of synthesizing CCAs by taking an uncommon

approach to program synthesis: formulating the problem as an op-
timization problem (in which a numerical objective is maximized

or minimized) rather than a decision problem (in which a logical

formula is ‘satisfied’ or ‘unsatisfied’). Our insight is that we can
evaluate candidate programs in the search space based on a measur-
able distance between the visible CWND of the candidate CCA in
simulation and the observed CWND of the true CCA in the wild. We
then formulate our procedure to select a program that minimizes this
distance.

Our observation that CCAs are amenable to an optimization

formulation provides cross-cutting gains across four dimensions of

the synthesis process:

Evaluation: When we have a candidate CCA proposed by the

synthesizer, how can we evaluate whether it matches the expected

behavior of the ground truth CCA? A key challenge with mea-

surements of ground truth CCAs ‘in the wild’ is the presence of

noise in our measurements of the true CWND: our observation of

the CWND may be incomplete due to our measurement vantage

point, packets may be dropped or delayed, etc. An optimization

formulation allows us to accept candidate CCAs that are close, but

imperfect matches to what is observed, compensating for this noise.

DSL Formulation: We aim to identify any CCA that fits the DSL

defined by ‘classical’ CCAs. Nonetheless, this search space still

remains intractably large. Here, we leverage the fact that CCAs

typically fall into ‘families’ (e.g., Westwood is in the Reno family;

Veno is in the Vegas family.) Hence, we break the DSL into sub-DSLs

per CCA family. When given a new ground-truth CCA trace, we

use existing classification techniques to constrain the search to a

sub-DSL containing only operators and values for that CCA family.

Program Search: Finally, the process of searching for candidate
programs is greatly aided by the presence of a measurable function

to declare which programs are ‘closer’ to the correct solution and

which are ‘further’. We perform several key optimizations here,

including breaking down the search further across sub-DSL ‘buck-

ets’ and parallelizing search across these buckets [10]. To prioritize

which buckets to search first, we sample a few candidate CCAs

from the bucket and evaluate their distance to the ground-truth

measurements; we then prioritize search in the buckets with closer

measurements over CCAs with further measurements.

Goal: We emphasize that, with Abagnale, we do not seek to pro-

duce the precise CCA implementation that produced the behavior

observed in a given set of packet traces. Rather, our goal is to pro-

duce a succinct representative expression that captures a CCA’s

core behavior. Even this limited goal is an ambitious step relative

to both modern CCAs as well as state-of-the-art program synthesis

techniques. Thus, Abagnale is an initial step towards understanding

unknown CCAs rather than the final word. For example, many of

the most advanced congestion controllers today incorporate ma-

chine learning or statistical techniques, and reverse engineering

these remains out of reach for Abagnale or any other existing tech-

nique. Similarly, as we discuss in §3, Abagnale cannot discover

hidden state variables in CCAs that affect their externally visible

trace behavior.

Key Results: Despite these challenges, as we show in §5, Abag-

nale produces a closed-form expression that approximates BBR

without using state variables to maintain the pulse state, as most ex-

isting implementations do. Further, Abagnale produces expressions

matching those fine-tuned by a domain expert with knowledge

of the CCA in question for 9 out of 16 CCAs distributed with the

Linux kernel. Of the remaining 7 CCAs, 2 (LP and HTCP) miss

conditional modes of operation, 2 (HighSpeed and CDG) are out of

our scope due to their use of non-determinism and out-of-DSL op-

erators, 1 (Cubic) exposes a limitation in our SMT-encoded search

space constraints, and the last (BIC) has an expression depth too

deep to find within Abagnale’s time-bound. Additionally, we find

(§6) that Abagnale is able to efficiently discard large and irrelevant

portions of the search space from contention in all evaluated cases.

In contrast, prior work on Mister880 [24] cannot synthesize any al-

gorithm other than NewReno (measured without noise) and cannot

handle noisy traces at all.

2 Motivation and Background
In this section, we first discuss why reverse engineering conges-

tion control algorithms (CCAs) from packet traces is useful (§2.1)

and then discuss why existing state-of-the-art approaches to syn-

thesizing programs from examples are insufficient to synthesize

CCAs (§2.2).

2.1 Why reverse-engineer CCAs?
Today’s Internet presents an unprecedented explosion in con-

gestion control diversity. Although NewReno and Cubic were often

assumed to be the only players in the past, recent studies show

tremendous diversity in CCA deployments, with one 2019 study

reporting 6 algorithms with deployments across 2% or more of

servers [51]. There is also an incredible amount of experimenta-

tion: in 2017, Google silently rolled out BBR‘1.1’ without fanfare;

in 2019, Netflix deployed a custom variant of NewReno using its

RACK stack in FreeBSD; cloud gaming providers today continue to

develop bespoke proprietary CCAs [47].

Many researchers predict CCA diversity will increase in future

years. First, with the rise of user-space networking stacks such

as HTTP/3 (QUIC), modifying CCA code will become easier for

developers who no longer have to delve into kernel space to make

modifications. Second, application developers are beginning to see

gains from “bespoke” CCAs designed in a way that is specifically

tailored to their application. Hence, we have seen proposals for

CCAs tailored to video streaming [27, 54] or cloud gaming [57].

Novel algorithms may furthermore be proprietary, with companies

unlikely to share the ‘secret’ behind their applications’ competitive

network performance.

The explosion in CCA diversity has important implications for

many of the fundamental design goals of the Internet. For example,

new CCAs may improve or harm any of capacity utilization, the In-

ternet’s fairness landscape, average latency, or burstiness. Hence, it
is no surprise that in recent years researchers have invested significant
attention towards characterizing the explosion in CCA diversity.
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CCA Classifiers: Most attempts to characterize the Internet CCA

landscape focus on classifying CCAs: identifying whether a given

Internet service is using a particular published CCA. State-of-the-

art examples from this literature include Gordon [51], Inspector

Gadget [29], and others [55, 60, 64].

Most CCA classifiers connect to a server under investigation and

attempt to model or measure the CCAs visible congestion window

(visible CWND): the number of outstanding bytes in flight, over

time. They then use some classification algorithm (e.g., decision

tree, neural network) to match this time series of CWNDs to known,

ground-truth observations of existing CCAs (typically some subset

of the 16 default CCAs available in the Linux kernel). Classifiers

can neither provide insight into these unknown CCAs (other than

that they are unknown), nor provide any insight into known CCAs

(and indeed can also mis-classify known CCAs).

The Impact of UnknownCCAs: As discussed above, CCAs deter-
mine crucial properties of the Internet’s performance, such as link

utilization, fairness, burstiness/variability, and latency. One useful

way to understand unknown CCAs is performing measurement

either “in the wild” [20] or in testbed environments [4, 51, 56, 59].

While these experiments can illuminate useful, empirical properties

of the observed CCAs under study, they remain limited. Without

knowledge of the underlying algorithm, it is not possible to prove
bounds or guarantees about the algorithm’s behavior [3]. It is also

not possible to diagnose why a particular pessimal behavior is hap-

pening or make recommendations how to fix it: empirical tests

simply discover that something is wrong. Hence, we argue that to
truly understand the impact of novel CCAs on the Internet perfor-
mance landscape, it is crucial to understand the algorithm behind
each and every CCA.

2.2 Program Synthesis for Reverse Engineering
The process of generating a program based on its observed in-

puts and outputs is, by definition, a form of program synthesis. A
large literature of programming-by-example (PBE) tools follows

the blueprint of taking observed inputs and outputs and generating

a program that maps from input to output. However, existing PBE

tools cannot reverse engineer congestion control algorithms for

two key reasons: statefulness and noise.

Statefulness: Prior work has proposed many specialized PBE syn-

thesizers to solve practical problems such as data structure trans-

formations [25], spreadsheet data manipulation [31], data prepara-

tion tasks [22], and applications to computer networks [15, 61, 68].

There are also general PBE synthesizers [48] that take any DSL and

a set of examples as input and produce a program that satisfies the

examples. To produce this program, synthesizers use machine learn-

ing [6, 16, 40, 44], constraint solvers [39, 62], or some combination

thereof [17, 21].

Unfortunately, not all program outputs are merely the result of

a stateless operation over visible input variables, and CCAs are one

such case. For example, the output of TCP NewReno after a loss

is not simply
1

2
, it is

1

2
×𝐶𝑊𝑁𝐷 , the previously held congestion

window. Each timestep of the CCA’s progress depends on both the

inputs observed (losses, packets ACKed, measured RTTs) as well
as the existing state of the system. Because most PBE synthesizers

cannot model this state, they cannot synthesize CCAs.

DSL (§3.3)

Traces (§3.1)

Enumeration (§4.1)

Simulation (§4.2)

Refinement loop (§4.4)

−−−−−−−→
Search

←−−−−−−−−−−−−−−
Input selection

Figure 1: Abagnale system overview

Noise: Mister880 is a prototype CCA synthesizer [24]. Like us, the

authors aim to use Mister880 to uncover the underlying algorithms

of novel CCAs over the Internet. However, Mister880 formulates the

synthesis as a decision problem (as do the vast majority of program

synthesizers): it is only capable of modeling candidate synthesized

programs as ‘correct’ or ‘incorrect’ and has no flexibility for pro-

grams that are ‘close’ to the correct solution but which do not

perfectly replicate the observed behavior of the ground truth im-

plementation. This matters because in the Internet, packet traces

from a given CCA are noisy. Measurements of the ground-truth

CWND may reflect the vantage point of the trace measurement;

there may be packet delays or jitter that are unobserved; there may

be unexpected timeouts or losses that are observed at the sender but

not to our measurements, etc.. Hence, even if we had an exact copy

of the ground truth system, it is not possible to guarantee that our

measurements of the system ‘in the wild’ and our measurements

of the system in our testbed will be truly identical. In this setting,

Mister880 would discard even the correct algorithm as incorrect.

3 Model and Inputs
In the following sections, we describe Abagnale, the first program

synthesizer to take on (a) stateful programs and (b) noisy input data.

Abagnale’s stateful model of CCA behavior is similar to the model

used by Mister880, but its formulation of program synthesis as an

optimization problem rather than a decision problem is an entirely

different formulation.

Abagnale uses the measured outputs of candidate synthesized

CCAs to compute a ‘distance’ between the proposed CCA and the

ground-truth measurement; candidate CCAs with a lower distance

are considered better than those with a higher distance. Because

our goal is to minimize the distance, but not necessarily bring it

to 0, Abagnale can produce algorithms which almost match the

observed behavior of the ground truth CCA, thus accounting for

noise.

We find that formulating the synthesis problem as an optimiza-

tion procedure allows us to make further improvements to our

synthesis procedure, including making the search for the best can-

didate CCAmore efficient and making the search space of candidate

CCAs smaller (§4.4).

Model: In general, a CCA contains multiple state variables–e.g.
congestion window or link capacity estimate–that determine its
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behavior. The CCA reacts to multiple events–e.g. the arrival of an
acknowledgment or the determination of a packet loss. A com-

prehensive model of CCAs would thus determine expressions, or

handlers, to update each state variable upon the occurrence of

each event. With Abagnale, we focus on a specific but important

sub-problem: synthesizing an expression to update the congestion

window upon an acknowledgment’s arrival. While we believe Abag-

nale’s technique generalizes to synthesizing expressions to update

other known state variables for other events, we do not evaluate

such scenarios in this paper. We also leave synthesizing expressions

to update a CCA’s packet pacing rate to future work. A further

generalization might consider unknown, or hidden, state variables,
that affect the CCA’s behavior. We do not address these cases with

Abagnale and leave them to future work. However, we note that

Abagnale’s model can in some cases (e.g. BBR, see §5.2) nevertheless
synthesize handlers that approximate the CCA’s behavior despite

not modeling hidden state variables.

Fig.1 shows an overview of Abagnale’s synthesis process. In §4,

we discuss how Abagnale searches a space of possible programs to

identify candidate CCAs to replicate the ground truth CCA. Recall

that this search space is intractably large; without both optimiza-

tions and approximations we discuss, the synthesis process does not

succeed. However, before discussing the search process, we must

first identify a method to determine whether a candidate CCA has

replicated a ground truth CCA (§3.1); second, we must determine

what space of possible programs to search (§3.3).

3.1 Evaluating Candidate CCAs
Like CCA classifiers [29, 51, 64], we measure the observable

CWND and other signals (RTT, packet rate, etc.) over time from a

packet trace. Similarly to Mister880 [24], we execute each candidate

handler function in simulation given the same events and inputs

observed for the ground-truth CCA. For each packet received in

the collected trace, we execute the candidate handler function, and,

based on resulting CWND value, decide whether to send the next

packet. Once this is done for the whole trace, we have a second

time-series of the CWND produced by that handler. We call the

trace resulting from this simulation the synthesized trace. Unlike
Mister880 [24], we compare two candidate CCAs by computing

the distance (§4.3) between the two CWND traces. A handler is a

better candidate than another handler if it has a lower distance

to the ground truth trace. Using a distance measure rather than

assuming the best handler will produce identical outputs to the

ground truth CCA allows us to handle measurement noise – e.g.,

unobserved losses or jitter between our vantage point and the

server. In addition, using a distance measure allows us to use three

optimizations that tune Abagnale’s exploration of the search space;

we explain how we generate candidate handlers in §4.2, how we

select a distance metric in §4.3, and finally how we use these pieces

to explore the search space in §4.4.

3.2 Trace Collection
An additional necessity in evaluating candidate handler func-

tions is ensuring that we have representative traces for that handler
function. We need a wide range of measurements of the ground

truth CCA which capture the CCA’s behaviors under varying con-

ditions and events, otherwise we risk ‘overfitting’ to one particular

trace and set of conditions (for example, we might return a handler

that simply returns a constant CWND, the trace’s BDP) [58]. To

avoid this, we provide Abagnale with a diverse set of testing en-

vironments in order to observe more behaviors from the ground

truth CCA while also doing so in a way that does not result in too
much data for Abagnale to take in.

To achieve trace diversity, we use a controlled testbed from a

prior study [63] to configure a virtual network with RTTs rang-

ing between 10 to 100ms and bandwidth between 5 and 15Mbps.

Collecting traces representing a wide range of conditions enables

Abagnale to choose better candidate handlers. Indeed, when we

attempt to synthesize Cubic based on traces, Abagnale fails to find

a correct function when only given traces from any one configura-

tion of RTT and bandwidth: it is only when we provide traces from

a range of settings that Abagnale correctly synthesizes a Cubic

function.

While providing a large number of traces improves fidelity, eval-

uating the distance function as described above in §3.1 requires a

fixed amount of work per packet in each trace. Thus, evaluating

every packet of every trace is too costly. Instead, in Abagnale we

first split flow traces into trace segments corresponding to periods

between loss events. We infer loss events by searching for instances

of triple-duplicate-ACKs. Abagnale increases the number of trace

segments considered per candidate expression in each iteration of

its refinement loop (§4.4). Given a number of trace segments to

consider in an iteration, Abagnale first randomly selects half the

desired number of trace segments. For each of these sampled seg-

ments 𝑡 , Abagnale then selects the remaining un-picked segment

with the highest distance from 𝑡 . This trace segment selection strat-

egy makes it more likely to sample a diverse set of trace segments

representing many network conditions; this in turn helps Abagnale

avoid handlers that “over-fit” to specific traces.

3.3 DSL Curation
Finally, Abagnale takes as input a domain-specific language (DSL)

from which it will produce an expression to match the input packet

traces. Abagnale supports a large set of congestion signals and

variables, based on prior work on frameworks for developing

CCAs [53, 66]. This high expressivity comes at a cost: including all

known signals and combinations of signals in the DSL would make

the search space intractably large. Instead, we provide as input to

Abagnale a CCA-family-specific DSL which uses only a subset of

signals and operations. Of course, the user could use different DSLs

in separate Abagnale invocations on the same traces.

Indeed, groups of CCAs often use similar signals (e.g., Reno/West-

wood/etc, BBR/Vegas/Veno). Hence, we only include these signals

if called for in a chosen ‘sub-DSL.’ For example, the ‘rate/delay’ sub-

DSL includes signals for the RTT and ACK rate, used by CCAs like

BBR, Vegas, and Veno, but not by CCAs like Reno or Cubic. We use

existing CCA classifiers to hint which sub-DSL Abagnale should

use for a given set of traces. We show in §6.3 that this strategy picks

DSLs similar to those we would have chosen manually.

Listing 1 shows how input DSLs can vary. Almost all useful DSLs

will include the black-colored elements (e.g., arithmetic operators),

while the user may choose to exclude uncommon operators such

as cube-root. Some of the operators are derived from others, e.g.,
we offer a built-in EWMA operation since it is commonly used in
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cong-signal : mss | acked-bytes | time-since-loss

| ★rtt | ★min-rtt | ★max-rtt | ★ack-rate | ★rtt-gradient
num : cwnd | cong-signal | constant

| num + num | num − num | num · num | num
num

| bool ? num : num | ◦num3 | ◦ 3
√
num

bool : num < num | num > num | 𝑛𝑢𝑚 %𝑛𝑢𝑚 = 0

Listing 1: Non-colored elements are in the base Reno-DSL, teal-
colored ◦-prefixed elements are extensions for the Cubic-DSL, olive-
colored ★-prefixed elements are extensions for the rate/delay-DSL.

reno-inc ACKed×MSS

CWND

vegas-diff (RTT−minRTT)×ack-rate
MSS

htcp-diff RTT−minRTT

maxRTT

RTTs-since-loss time-since-loss

RTT

Table 1: Pre-defined macros used in Abagnale’s DSLs

CCA evaluation. While we could ask Abagnale to ‘discover’ the

EWMA operation during the synthesis process, we have found

that encoding common macros in the DSL enables Abagnale to

more effectively identify fruitful candidate expressions. Table 1 lists

the macros used to simplify CCAs’ commonly used expressions in

Abagnale’s DSLs. reno-inc is Reno’s CWND increment of one MSS

per sent packet. vegas-diff is Vegas’s estimation of the difference

between the expected and the actual sending rate [9]. htcp-diff is

the variation in RTT, as used by H-TCP [45]. RTTs-since-loss is the
time since the last loss event scaled by the current RTT estimate,

as used by BBR [13].

4 Exploring the Search Space
Once the input DSL and traces are defined, Abagnale explores

the resulting search space. The main challenge is the search space

size: even when considering a sub-DSL, the search space would

remain intractable if traversed naively. To cope with the size of the

search space, we adopt the following four key techniques:

DSL constraints. First, we place constraints on the members of the

DSL we will enumerate (i.e. consider to be candidate CCAs) (§4.1).

Constant sampling. Second, candidate CCAswill contain constant
values, and the correct setting of those values is susceptible to

trace noise, so rather than considering each setting separately, we

consider a random sampling of constant assignments as a single

set (§4.2).

Bucketization. Third, we devise a divide-and-conquer approach
that splits the search space into partitions; searching through these

partitions independently is faster than searching the entire space

as a whole (§4.4).

Bucket prioritization. Fourth, we identify a bucketing metric

that allows us to consider entire buckets of CCAs as a whole and
prioritize which buckets to explore deeper into (by splitting them

into sub-buckets) (§4.4).

mss

+ - /

cwndacks + -/ cwnd acks +- /

cwndacks+-

/

cwndmss● +- /

cwndmss+ - /

cwnd mss+- /●

●

●

●

●

●

Figure 2: Visualizing the search through an AST.

4.1 DSL Enumeration
Our search space is composed of all the trees of operations (i.e.,

abstract syntax tree, or AST) that can be built by combining the DSL

components. These ASTs may not correspond to concrete event

handlers, since they may have nodes assigned the DSL component

constant that do not receive a final value until the simulation phase

(§4.2). Until then, we call these incomplete handlers sketches. Pos-
sible sketches from this DSL include the Reno (equation 1) and

Vegas (equation 2) sketches. The olive-colored and
★
-prefixed el-

ements represent the components specific to the Vegas-DSL, and

𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐5 represent undefined constants. Figure 2 visualizes

searching an AST within the Reno-DSL.

cwnd += mss · acked
cwnd

(1)

cwnd +=
(

cwnd
★min-rtt

− ★ack-rate < 𝑐1

)
? 𝑐3 ·mss

:

(
cwnd

★min-rtt
− ★ack-rate > 𝑐2

)
? 𝑐4 ·mss : 𝑐5 (2)

The number of sketches we can build from DSL components

is infinite – we could simply keep growing the expression tree –

so we limit the search space by limiting the maximum depth of

the AST. For a fixed depth, the number of possible sketches grows

exponentially with the number of DSL components. This makes the

search space very large: if we consider trees of maximum depth 7

with the 25 components of the DSL in Listing 1, the correct sketch

is one out of a universe of ≈ 10
150

.
1

Dealing with large search space sizes is common in synthesis

literature, so we start by leveraging techniques from previous work.

First, we rely on an SMT formula to extract from this space only

sketches that type-check [23, 33, 48]. We also specify that sketches

should not be arithmetically simplifiable using the sympy [50]

library. Second, we impose CCA-specific constraints: the output

should have the correct units (in this case bytes) and should not

monotonically decrease (since any reasonable CCA must grow the

window at some point). We iteratively query an SMT solver to

explore the search space with the resulting formula. Each solution

to the SMT formula is a sketch with the desired properties. After

1
Our physical universe has ≈ 10

79
atoms, so the sketch’s universe is much larger.
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obtaining a sketch, we can ask the SMT solver for a different sketch

by adding a constraint that blocks the previous solution.

4.2 Concretizing Enumerated Sketches
The sketches the enumeration process returns can have unas-

signed constants, e.g., 𝑐1, 𝑐2, ... in equation 2. To evaluate a candidate

sketch, we first need to produce a concrete handler function with

no unassigned constants from the sketch. One way to concretize

the constants in a sketch is to try different concrete number values

for each constant. The problem with this combinatorial search is

that the set of concrete handlers associated with a single sketch

grows exponentially: the number of ways we can assign 𝑘 variables

with 𝑛 values is 𝑘𝑛 . For example, the Vegas sketch has 5 unassigned

variables, so if we considered 10 different values for each, we would

get ≈10 million handlers for just one sketch out of millions. Ideally,

these constants should be able to take any real value, but it would

be prohibitively slow to solve the resulting real-valued optimization

problem for each sketch. Rather, Abagnale focuses on identifying

promising sketches with approximate concretization. That is, we
limit the values constants can take to a small set of values observed

in known CCAs to estimate a sketch’s distance from a trace frag-

ment. This strategy makes our approach incomplete, i.e., there are

handlers that we will not explore, dependent on the predefined

values chosen for the constants. However, in our experiments, this

did not prevent Abagnale from returning useful sketches. After

Abagnale returns a handler, it is possible to evaluate this handler’s

sketch using a broader set of constant values.

4.3 Selecting a Distance Metric
How should Abagnale determine whether a candidate handler

matches a set of traces? Because of our optimization formulation of

the synthesis problem, we require a distance metric. We consider

various methods for computing the distance between two traces.

Importantly, as described above, Abagnale cannot exhaustively

evaluate all assignments of constant values since doing so would

make the search space too large. As a result, it is important to select

a distance metric that tolerates error to the greatest extent possible.

In Figure 3, we show how four distance metrics respond to errors

in handlers’ constant values. We use packet traces corresponding

to BBR,
2
and we calculate the distances using in-DSL expressions

for BBR, Cubic, Reno, and Vegas written by a domain expert. We

introduced a fixed amount of multiplicative error, from 0.1 to 10, to

each constant in each handler, and measure the resulting handler’s

distance from the trace. We then determine for each amount of error

whether the correct CCA’s handler remained the closest to the trace.

If another CCA’s handler was closer using that distance metric, we

shade the background in red. We observe that the Dynamic Time

Warping (DTW) [7] distance remains correct for the widest range of

constant error. This distance metric is alignment-based; i.e. it seeks
to correct for temporal shifts between curves. Unfortunately, DTW

distance is significantly more expensive to compute than Euclidean

distance. For Abagnale, we find that in most cases, DTW’s improved

resilience to constant error is worth the additional runtime, and

configure Abagnale to use it unless otherwise described.

2
When selecting a primary distance metric, we additionally evaluated other CCAs’

traces and other distance metrics, but we elide those results for brevity.

Figure 3: Comparison of distance metrics’ tolerance to error in con-
stant values, for traces from the BBR CCA. Red-shaded regions indi-
cate that a synthesized CCA other than BBR had a smaller distance
to the traces. Note the x-axis, showing the amount of error we intro-
duce to the fine-tuned constant values, is in log-scale.

4.4 Guiding the Search
Even when using curated sub-DSLs and the above techniques,

Abagnale could not synthesize CCAs that use more complex DSLs.

We tackled this problem by (1) splitting the search space into disjoint

subspaces, and (2) using our distance metric (§3.1) to prioritize

subspaces that aremore likely to generate CCAswith lower distance

to the input traces.

Partitioning the search space. Partitioning the space facilitates
parallelization by allowing Abagnale to use a specialized solver

invocation per bucket and performing the search across buckets in

parallel [10]. This makes enumeration significantly faster not only

because it can take advantage of multiple cores, but also because

each solver is searching over a smaller space. Recall that (i) the

solver query grows every time we query the solver for a new sketch,

since we must exclude all previously returned sketches to get a new

one; and (2) solver execution time grows rapidly with query size.

Thus, smaller sub-search spaces can use smaller queries, which is

faster. We call each of these sub-search spaces a bucket.

Bucketing metric. How should we divide the space into buckets?

We must ensure that each sketch in the DSL belongs to a single
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Algorithm 1 Abagnale’s refinement Loop

1: procedure SynthesisLoop(DSL, buckets, N, k)
2: while buckets not exhausted do
3: for all bucket ∈ buckets do ⊲ in parallel

4: samples← enumerate N sketches from bucket

5: distances← distance for each sketch ∈ bucket
6: bucket-score← min(distances)
7: end for
8: buckets← only-top-k(buckets, bucket-scores)
9: 𝑁 ← 𝑁 · 23
10: 𝑘 ← 𝑘/2
11: end while
12: end procedure

bucket according to a bucket discriminator : a metric we can express

in the solver query which will cause it to only enumerate sketches

in the bucket corresponding to the metric’s value.

We want to choose a metric such that two sketches in the same

bucket share not only some structural similarity—so that we can

easily encode it into a dedicated solver—but also share some be-
havioral similarity. Thus, our approach is to pick a discriminator

that ensures behavioral similarity between sketches in the same

bucket, so that we can sample N sketches from all the buckets at

the beginning, simulate them using the procedure described in §4.2,

and assign each bucket a score based on how close the traces in the

sample were to the desired behavior. Using these scores, we order

the buckets from most promising to least promising, drop the least

promising buckets, and repeat this loop with an increased size of

samples N and a reduced number of buckets.

Of course, this approach requires a bucketing metric that pre-

serves behavioral similarity. We considered four such metrics: (1)

fixing the operations of the nodes of the first 3 levels of the tree,

(2) limiting the subset of DSL operators (addition, multiplication,

power, etc) the sketch can use, (3) limiting the subset of congestion

signals and state variables (delay gradient, minimum RTT, time

since the last loss, etc) the sketch can use, and (4) fixing all DSL ele-

ments the sketch can use (so, a combination of (2) and (3)). We found

that limiting the subset of DSL operators (addition, multiplication,

power, etc.) the sketch can use–option (2) above–provided the best

results: this metric was easy to integrate into the enumeration pro-

cess and allows Abagnale to have an independent SMT solver for

each bucket and enforce the bucket’s metric value without much

overhead in the formula.

Search prioritization. We use our bucketing metric to guide the

search. Abagnale uses a refinement loop as shown in Algorithm 1.

The algorithm takes as input the DSL, and each bucket’s discrimi-

nator. It also takes the initial values of 𝑁 , the number of samples

we will consider from each bucket and 𝑘 , the number of buckets

that are retained to the next iteration. In each loop iteration, we

sample 𝑁 sketches from each bucket (line 4). In line 5, we run the

simulation procedure on each of them and save the best distance

that a concrete handler built from that sketch can achieve. Then

each bucket is assigned a score in line 6, equal to the minimum

of these distances. Having computed all scores for all buckets, we

sort them in line 6 from most promising to least promising, i.e. by
increasing score value. Then, in line 8, we refine the search space

by selecting only the most promising buckets to be explored further.

only-top-k will return the subset of the buckets whose scores are

lower than or equal to the 𝑘-th bucket score. This means that, if

there are no ties, 𝑘 buckets are retained to the next iteration of the

loop. Before going on to the next iteration of the loop, we update 𝑁

and 𝑘 . Now that we know we are looking into the more promising

subset of all buckets, we want to dig deeper into each one to find as

good a handler as possible, so 𝑁 , the sample size for each bucket, is

increased by 8 times in l.9. As we get deeper into each bucket, we

increase the trust in our scoring, so we want to get more and more

conservative in how many buckets keep in the search. In l.10 we

update 𝑘 to half its previous value. Since we expect each iteration to

evaluate fewer handlers, we can afford to compute distances using

more traces, so we also increase the number of distinct traces being

used by two. Abagnale repeats this loop until either (1) there is

one bucket left, in which case we exhaustively enumerate it and

return the best handler within it, or (2) 𝑁 grows larger than the

size of the largest bucket still in consideration, which means all

buckets have already been exhaustively enumerated. During the

whole loop duration, Abagnale stores the lowest distance handler

it has found thus far, so if the user interrupts the loop (e.g., with a

timeout), Abagnale will return that handler.

5 Results
We now show Abagnale’s synthesized expressions across two

sets of packet traces. The first set of traces corresponds to the

16 CCAs with implementations distributed with the Linux kernel:

BBR [13, 38], Cubic [34], Vegas [9], Reno [37], BIC [67], CDG [36],

HighSpeed, H-TCP [45], Hybla [12], Illinois [46], LowPriority [42],

NV [8], Scalable [41], Veno [28], Westwood [49], and YeAH [5].

These CCAs are implemented as Linux kernel modules in ~50–500

lines of C. The second set of CCAs is a publicly available dataset

of novel CCAs written by students at a US university as part of a

graduate-level networking class. These CCAs are implemented in

between 50–150 lines of C++.

Abagnale produces arithmetically simple expressions—i.e. with
a maximum AST depth of 5, which is significantly simpler than the

original implementations—for all these CCAs.

Implementation. To synthesize these expressions, we imple-

mented Abagnale on Python 3.11.7. We ran all experiments using

Intel Xeon Gold 6226R with 256GB of RAM, Intel Xeon E5-2630 v2

with 64GB of RAM, and Intel Xeon Silver 4110 CPUs with 64GB of

RAM, with different numbers of cores and RAM. We used Z3 [19]

version 4.8.10 for all SMT queries. Since scoring handlers (§4.3) is

a parallelizable task, we used Ray [52] to distribute the synthesis

tasks among cores across different machines. For every experiment,

we explored different depths of the same DSL on different parallel

machines (we evaluate the impact of DSL depth in §6.3). We ran

all synthesis tasks to completion (i.e., until Abagnale returned a

result); in all cases, this took less than 48 hours per depth per CCA.

5.1 Results Overview
We show a summary of CCAs we attempted to synthesize in

Table 2. Each row in the table refers to an analysis of traces derived

from a single CCA, identified in the first column. In the second

column we show the expression Abagnale synthesizes, as well

as the sum of distances between the synthesized traces and the

respective collected traces. Note that these expressions use only
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CCA Synthesized cwnd-ack handler
DTW

Fine-tuned cwnd-ack handler
DTW

distance distance

BBR

2 × ack-rate ×minRTT +
195.21

minRTT × ack-rate ×
143.08{CWND%2.7 = 0} ? 2.05 × CWND : MSS ({RTTs-since-loss%8 = 0} ? 2.6 : 2.05)

Reno CWND + .7 × reno-inc 18.84 CWND + .7 × reno-inc 18.84

Westwood CWND + reno-inc 86.99 CWND + .68 × reno-inc 12.72

Scalable CWND + .37 × reno-inc 26.25 CWND + .37 × reno-inc 26.25

LP CWND + .68 × reno-inc 18.2

CWND × ({htcp-diff > .5} ? .5 : 1) +
18.2

.68 × reno-inc
Hybla CWND + 8 × RTT × reno-inc 35.77 CWND + 8 × RTT × reno-inc 35.77

HTCP CWND + reno-inc 56.24 CWND + reno-inc × {htcp-diff < .25} ? 1 : .2 54.53

Illinois CWND + 1.3 × reno-inc 397.99 CWND + .3 × reno-inc + 5 × reno-inc × htcp-diff 467.81

Vegas CWND + {vegas-diff < 1} ? .7 × reno-inc : 0 24.36

CWND + {vegas-diff < 1} ? .7 × reno-inc :
20.21{vegas-diff > 5} ? − .7 × reno-inc : 0

Veno CWND + reno-inc × {vegas-diff < .7} ? .35 : .16 9.26 CWND + reno-inc × ({vegas-diff < .7} ? .35 : .16) 9.26

NV CWND + {vegas-diff < 1} ? .7 × reno-inc : 0 58.1

CWND + {vegas-diff > 1} ? .7 × reno-inc :
479.39{vegas-diff > 5} ? − .7 × reno-inc : 0

YeAH CWND + reno-inc × {vegas-diff > 5} ? .3 : 1 33.41 CWND + reno-inc × {vegas-diff > 5} ? .3 : 1 33.41

Cubic CWND + time-since-loss
3

3580.67 wmax + (8 × time-since-loss − 3

√︁
(.24 ×wmax))3 41.74

Student 1 88 196.06 – –

Student 2

{
vegas-diff
minRTT

< 5

}
? CWND +MSS : MSS 12203.07 – –

Student 3 .8 × ACKed

minRTT
7698.63 – –

Student 4 MSS 217.56 – –

Student 5 2 ×MSS 32.69 – –

Student 6
𝑐𝑤𝑛𝑑+150×MSS

delay-gradient
24406.14 – –

Student 7 CWND + 2×ACKed
RTT

17541.93 – –

Table 2: Results of running Abagnale on different input traces. The first column, “CCA” shows the ground truth, i.e., the algorithm that was
running when the set of traces used for this task was collected. The second column shows Abagnale’s output cwnd-ack handler expression, and
the sum of DTW distances between synthesized traces computed with this handler and the respective ground truth traces. The third column
shows a domain-expert’s attempt at handwriting a cwnd-ack handler expression from the source code of the respective CCA, as well as the
sum of DTW distances computed with these handlers.

the default constant values listed in §6.1, but we arithmetically

simplify the expressions where possible for readability. Abagnale

computes these distance values shown over the trace segments

used to synthesize each CCA. Since Abagnale synthesizes different

CCAs using different sets of traces, the distance values shown for

these handlers are not comparable across CCAs, i.e., across rows.

Within the same row, the difference between the synthesized

handler distance and the fine-tuned handler distance gives us an

idea of how close the behavior of these two handlers is. In rows

where the synthesized handler distance is the same as, or very close

to, the fine-tuned handler distance (e.g., BBR, Reno, Scalable, LP,

Hybla, HTCP, Illinois, Vegas, Veno), Abagnale outputs a handler

that closely matches the behavior of the fine-tuned handler in the

traces used for synthesis. When the synthesized handler distance

is much higher than that of the fine-tuned handler (e.g., Cubic),

Abagnale’s refinement loop was unable to select the correct bucket

for exploration, and the fine-tuned handler was never evaluated.

Before running Abagnale on the collected traces, we run a CCA

Classifier, Gordon [51], on the same traces. Gordon establishes mul-

tiple connections to the server, and classifies each connection as

running one of its known CCAs (BBR, Cubic, BIC, HTCP, Scalable,

YeAH, Vegas/Veno, Reno, Illinois, andWestwood), or as “Unknown”.

Table 3 shows Gordon’s output. If Gordon determines that a major-

ity of the test connections match a single CCA, we list that CCA in

the table. If Gordon only matches a minority of the connections, we

report that output in parentheses. Finally, when we ran Gordon on

New Vegas (“NV” in the table), it classified all of the connections

as “Unknown”, so we report this result as “Unknown”.

The CCAs from the class project dataset are implemented with a

UDP transport, which Gordon does not support. Thus, for these, we
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CCA Classifier output

BBR BBR

Reno Reno
Westwood Vegas

Scalable Scalable
LP Unknown (Vegas)

Hybla BBR

HTCP HTCP
Illinois Illinois

Vegas Vegas
Veno YeAH

NV Unknown

YeAH YeAH

Cubic Cubic

Student 1 Unknown (CDG, Vegas)

Student 2 Unknown (CDG, Vegas)

Student 3 Unknown (Scalable, Vegas)

Student 4 Unknown (CDG, NV)

Student 5 Unknown (CDG, Vegas)

Student 6 Unknown (CDG, Vegas)

Student 7 Unknown (CDG, Vegas)

Table 3: Result of running a classifier (Gordon [51] for the Kernel
algorithms, or CCAnalyzer [64] for the students algorithms) for the
CCA. The CCAname in parenthesis after "Unknown" is the CCA that
the classifier identified as closest, despite the output being Unknown.
We color classifier outputs blue if correct and red if incorrect.

run CCAnalyzer [64]. As expected (since these are all novel algo-

rithms), CCAnalyzer outputs “Unknown” for all algorithms. Since

this classifier uses a distance metric to compare with its known

algorithms, we can also ask it for the closest known algorithms to

the trace behavior. CCAnalyzer reported CDG and Vegas as the

closest CCAs to all the student’s algorithms but one, for which

it reported Vegas and Scalable. As before, we use these classifier

results to pick the DSLs we run Abagnale with.

Fine-Tuned Handlers: We emphasize that it is not Abagnale’s

goal to reproduce the CCA implementation that resulted in the

collected packet trace; as described previously, these implementa-

tions can comprise hundreds of lines of code, covering both logic

irrelevant to the CCA’s behavior such as custom congestion signal

measurement logic and edge cases that Abagnale does not attempt

to capture. Thus, rather than using the implementation that gener-

ated the trace as our ground truth, we use fine-tuned versions of

the synthesized handlers. To write these fine-tuned handlers, we

used the synthesized expression as a starting point and use domain

knowledge of the CCAs’ implementations and descriptions of their

behavior to write a handler with the same depth and within the

same DSL that captures the CCA’s behavior. During this task, we

found (anecdotally) that it is easy to miss implementation details

and it is hard to simplify handlers’ computations to fit the DSL, so

these handlers are also not a perfect match of the CCA’s behavior.

In fact, as Table 2 shows, some fine-tuned handlers have higher

distance to the collected traces than the respective synthesized
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Synthesized win-ack handler for BBR (DTW distance 92.0):
win-ack = (2) · ack rate ·min rtt + ((cwnd%2.7 = 0) ? 2.05 · cwnd : mss)

Fine-tuned win-ack handler for BBR (DTW distance 73.9):
win-ack = ((rtts since loss%8.0 = 0) ? 2.6 : 2.05) · (min rtt · ack rate)

collected trace inflight

synth. trace inflight

fine-tuned trace inflight

(a) A trace in which the fine-tuned handler achieves a lower distance than the
synthesized one.
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Synthesized win-ack handler for BBR (DTW distance 44.9):
win-ack = (2) · ack rate ·min rtt + ((cwnd%2.7 = 0) ? 2.05 · cwnd : mss)

Fine-tuned win-ack handler for BBR (DTW distance 75.5):
win-ack = ((rtts since loss%8.0 = 0) ? 2.6 : 2.05) · (min rtt · ack rate)

collected trace inflight

synth. trace inflight

fine-tuned trace inflight

(b) A trace for which the fine-tuned handler achieves a higher distance than
the synthesized one.

Figure 4: Even though the handler handwritten by a domain expert
based on the BBR kernel implementation is a better visual match to
the collected BBR trace, the synthesized trace with random “spikes”
has a lower distance for some traces.

handler. In these cases, our understanding of the original CCA’s

implementation from analyzing its implementation mismatched

the CCA’s actual behavior in the traces. This was either because

we over-estimated the impact of edge-case scenarios or there was a

mismatch between descriptions of the CCA and its implementation.

We show the fine-tuned handler for each CCA in the third column

of Table 2. We used these fine-tuned handlers to understand the

handlers Abagnale produces more deeply. We show an evaluation

of Abagnale’s accuracy relative to these fine-tuned handlers in §6.2.

5.2 BBR
BBR [13]’s core behavior consists of periodic pulses that probe

for additional bandwidth, called “PROBE_BW” mode. In most im-

plementations, these pulses are controlled by a state variable which

determines whether the sending rate and congestion window are

set above, below, or at the estimated bottleneck rate. Of course,

Abagnale does not support hidden state variables and can only

produce closed-form expressions, so we use BBR as a case study to
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Synthesized win-ack handler for HTCP (DTW distance 15.7):

win-ack = cwnd + mss∗acked
cwnd

collected trace inflight

synth. trace inflight

Figure 5: Although this HTCP trace exhibits an inflection point, a
simple Reno-variant handler has a low enough distance that Abag-
nale does not explore more complex handlers.

better understand whether Abagnale can capture such algorithms’

behavior.

In this case, Abagnale synthesizes pulsing behavior in a differ-

ent way: if the CWND is an even number, it sets the CWND to

8 × 𝐶𝑊𝑁𝐷 , and otherwise uses 2.15 × minRTT × ack-rate. This

expression captures BBR’s “CWND gain” feature that seeks to main-

tain a standing queue [63]. By periodically increasing the CWND

beyond this value, the handler will achieve the same probing prop-

erty as BBR, since if the true bottleneck bandwidth is a higher value

than ack-rate, then the ack-rate will increase correspondingly. Dig-

ging deeper into this synthesized handler, we compare its fidelity

to the fine-tuned handler (which uses 𝑟𝑡𝑡_𝑠𝑖𝑛𝑐𝑒_𝑙𝑜𝑠𝑠 % 8 == 0 to

implement pulses) in Figure 4. Indeed, in Figure 4a we see that

this fine-tuned handler achieves a lower DTW distance than the

synthesized handler. This matches visual intuition; in this trace, the

fine-tuned handler’s pulses are aligned with the pulses observed

in the trace. However, this is not true for all traces. In the trace

shown in Figure 4b, the synthesized handler achieves a lower dis-

tance. This example demonstrates a limitation of the DTW distance

metric; because DTW purposely disregards temporal shifts, it is

less likely that Abagnale will produce a synthesized handler which

matches the original CCA’s pulse behavior. Nevertheless, Abagnale

produces a viable expression for BBR which is significantly simpler

and more understandable than the original implementation.

5.3 Reno-Variant CCAs
The Reno, Westwood, Scalable, and LP CCAs all behave similarly

to Reno, with minor modifications to the cwnd-increase function.

Indeed, Abagnale produces similar expressions for traces generated

by these CCAs. These CCA expressions matched the kernel imple-

mentations’ behavior even with combinations of Abagnale’s default

placeholder constants, and fine-tuning these CCAs only required

modifying the constant values. Thus, Abagnale is able to confirm

(without needing access to the source code) that these CCAs behave

similarly to each other, and is able to estimate each CCA’s relative

aggressiveness.

Three more CCAs’ traces result in handlers with the same Reno-

variant structure: Hybla, HTCP, and Illinois. The objective of the

Hybla CCA is indeed to increase similarly to Reno, but to scale

the increase to compensate for high-delay links [12]. Indeed, the

synthesized handler similarly scales the increase proportionally to

the link RTT.

Surprisingly, Abagnale also returns a Reno-Variant handler when

provided traces fromHTCP [45] and Illinois [46]. This is unexpected

because we expect both to depend on delay-based signals. Figure 5

digs deeper into this result for HTCP (Illinois is similar). We find

that, indeed, the trace segment depicted exhibits an inflection point

in the congestion window growth. However, Abagnale is unable to

find a handler that more closely represents the behavior observed

in the traces, even at higher depths.

5.4 Vegas-Variant CCAs
The Vegas, Veno, NV, Illinois, and YeAH CCAs all use conditional

expressions derived from a delay signal to determine their conges-

tion window evolution. Abagnale consistently includes this feature

in the synthesized handlers for these traces. Note that we include in

the DSL the expression (RTT−minRTT) × ack-rate

MSS
, which is a com-

monly used estimator of the number of packets in the bottleneck

queue. We highlight that even though the classifier is unable to

identify NV, Abagnale correctly produces a Vegas-variant handler

given traces from NV.

In fact, Abagnale’s output given traces from NV is identical to

its output for traces from Vegas. We note that the CCAs Vegas

and NV (i.e., “New Vegas”) use the same fundamental logic [8, 9];

their differences are only in the way they measure the number of

packets in the queue. For example, NV uses a moving average of

the delay and uses a hidden state variable to reduce the frequency

of its window updates to once per RTT. Since Abagnale provides its

own definitions of congestion signals and captures behavior rather

than implementation details, it correctly returns the same handler

for both these sets of traces.

5.5 Remaining CCAs
The remaining CCAs we consider from the Linux kernel are BIC,

CDG, Cubic, and HighSpeed.

BIC: The BIC CCA, at a high level, conditionally performs either

binary search between the current window and the window at the

time of the last loss, and linear probing [67]. The closest expressions

Abagnale returns on BIC traces, meanwhile, grow the window

according to the time since the last loss. As a result, we suspect

that the correct handler for BIC has an AST depth too deep (with

multiple levels of nested conditionals) for Abagnale to effectively

explore.

CDG: The CDG CCA calculates the probability of reducing the

window based on the RTT value and randomly decides to decrease

the congestion window based on this drop probability [36]. Since

calculating random values is outside the input DSL, it is not possible

for Abagnale to synthesize the correct handler. As a result, we do

not run Abagnale on CDG traces.

Cubic: When encoding our unit constraints as described above

in §4.1, we make a design decision to only encode integer-valued

constraints, so that the enumerator formula remains a quantifier-

free finite domain formula, which makes queries significantly faster.

Unfortunately, as a result, Abagnale cannot unit-check cube-root

operations. We thus run Abagnale with unit constraints disabled

on Cubic-derived traces. Indeed, the returned expression captures a
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CCA
pos. after

iteration 1

pos. after

iteration 2

BBR 4/127 3/5

Cubic 7/27 –

HTCP 2/31 4/5

Hybla 4/7 1/5

Illinois 3/63 3/5

LP 1/63 1/6

NV 5/15 2/5

Reno 3/218 1/5

Scalable 1/218 1/5

Vegas 5/15 4/5

Veno 1/7 1/5

Westwood 1/218 1/5

YeAH 1/31 1/5

Table 4: Abagnale’s progress through the search space for the CCAs
distributed with the Linux kernel.

subset of Cubic’s behavior - growing cubically with the time since

the last loss - but this expression does not have consistent units.

HighSpeed: The HighSpeed CCA uses logarithmic operations [26].

In the Linux kernel implementation, this is implemented with a

large lookup table. As is the case with Cubic, our enumeration

constraints cannot reason about exponentiation and logarithm op-

erations. We did not run Abagnale on HighSpeed traces as a result.

5.6 Student CCAs
When we run the CCAnalyzer classifier on the student CCA

dataset, the classifier indicates that all 7 CCAs have some similarity

to Vegas. Unsurprisingly, when we run Abagnale on these traces

many are of Vegas-variant form: Student CCAs 1, 2, 4, and 5 all mod-

ify the congestion window by comparing (RTT−minRTT)× ack-rate

MSS

to a constant threshold value. Note that the synthesized result for

the Student 5 CCA is simplifiable, since the first conditional expres-

sion is trivially false; as discussed above, Abagnale cannot reason

about this simplification due to its reliance on sympy. We discuss

the student CCAs in more detail, particularly exploring the impact

of DSL depth, in §6.3.

6 Evaluation
We previously described the intractably large search space Abag-

nale must navigate during the synthesis process. We now evaluate

how well Abagnale navigates this space. We consider three aspects

of Abagnale’s exploration:

(1) How much of the search space does Abagnale evaluate in

order to return the results in §5? We show Abagnale’s explo-

ration of the search space for Reno in §6.1.

(2) How far off was Abagnale from returning the fine-tuned

CCA a domain expert developed with knowledge of both the

synthesized handler as well as the nature of the ground-truth

CCA? We discuss this in §6.2.

(3) How important are the DSL inputs to Abagnale in determin-

ing whether it will return a good sketch for an unknown

CCA? We evaluate this in §6.3.

6.1 Search Efficiency
We evaluate how efficiently Abagnale explores its search space

by digging deeper into its exploration of traces produced by Reno.

Recall that for this CCA, Abagnale returns the following expression

with depth 3: CWND + .7 × reno-inc. Note that we encode reno-inc
as a macro in Abagnale’s DSL, so that sub-expression does not

increase the depth.

The Reno DSL is shown in Listing 1. Between congestion signals,

operators, and macros, this DSL contains 11 elements. The space of

all depth-3 sketches that can be built in this DSL is then ~ 2 billion.

From those, using the enumeration pruning techniques described in

§4.1, Abagnale reduces this space to 1,617 sketches. This represents

the space of type-checked, unit-checked, non-simplifiable Reno-

DSL cwnd-ack handler sketches. Each of these sketches can get

expanded into concrete win-ack handlers, by filling out its holes.

In total, the Reno-DSL search space has 101,000 concrete handlers.

Abagnale first partitions the search space into 218 disjoint buck-

ets. The first iteration of the refinement loop enumerates and scores

a sample of 16 handler sketches of each of the 218 buckets. To do

this, Abagnale must concretize each sketch with constant values.

Each sketch has between 1 and 273 completions, so in this first

iteration Abagnale scores a total of 17,500 fully-populated handlers.

Scoring these handlers is parallelizable, and completes in 7 minutes

on the cluster described above. After this first iteration, Abagnale

retains 5 of the 218 buckets. In the second iteration, it samples

an additional 112 sketches (totalling 128 across the two iterations)

from each bucket. 3 of the buckets contain fewer than 128 sketches

in total; we enumerate those buckets exhaustively. Thus, in this

iteration Abagnale scores 28,400 fully-populated handlers, in 13

minutes. After this iteration, Reno retains the 2 top buckets. These

two buckets both contain fewer than 128 sketches, so they had

already been fully enumerated. So, Abagnale returns the handler

with the lowest known distance, CWND + .7 × reno-inc. Overall,
Abagnale finds this handler after exploring only about a third of

the viable search space (i.e. the search space remaining after all

enumeration constraints).

6.2 Search Accuracy
We next evaluate Abagnale’s accuracy relative to the fine-tuned

handlers described in §5.1. We measure where in the process Abag-

nale discarded the fine-tuned handler in favor of the one it even-

tually returned. Note that in some cases, such as with BBR (§5.2),

this fine-tuned handler does not have a lower DTW distance to the

collected trace than the handler the synthesizer returned.

Table 4 shows this result. Recall from §4.4 that Abagnale’s search

proceeds iteratively through “buckets” of the search space. The

column “position after iteration 1” shows both the rank of the

fine-tuned handler’s bucket, and the number of possible buckets.

For example, for BBR, “4 / 127” indicates that the fine-tuned han-

dler’s bucket had the fourth-lowest estimated distance out of 127

total buckets. In the first iteration of the refinement loop, Abag-

nale retains the top 5 buckets. Thus, in this example, Abagnale

correctly discarded 122 of the 127 possible buckets. For Cubic, the

first iteration of the refinement loop ranks the fine-tuned handler’s

bucket 7th. Since only 5 buckets are retained for the second itera-

tion, the fine-tuned handler’s bucket gets discarded. If this bucket

had not been discarded, exhaustive exploration would have ranked
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(a) Student CCA 1 with different DSLs

(b) Student CCA 3 with different DSLs

Figure 6: Three different synthesized CCAs for Student 1 and Student
3 using DSLs identified by CCAnalyzer [64].

the fine-tuned sketch at 7 / 4,794. Within these sketch completions,

the fine-tuned handler would have ranked 1/36. For Cubic, unlike

BBR, the fine-tuned handler has lower distance than the expression

Abagnale returns. So, if the fine-tuned handler had been sampled

from the respective bucket in the first iteration of the loop, Abag-

nale would have exhaustively searched that bucket and ultimately

returned the fine-tuned handler.

The second column shows the same result after the second it-

eration of the refinement loop. This second iteration has more

information about each bucket, because it samples 128 sketches

from each of the 5 buckets (in the first iteration Abagnale samples

only 16). For BBR, we see that the fine-tuned handler bucket was

ranked 3rd in the second iteration, so it was not selected for exhaus-

tive search. Similarly, for Vegas, the fine-tuned handler is in the

fourth-ranked bucket after the second iteration of the refinement

loop. In both cases, Abagnale exhaustively enumerates, concretizes,

and scores the top-scoring buckets (which do not contain the fine-

tuned handler). The fine-tuned handler’s bucket in the Vegas DSL

only contains one sketch; this means that, similarly to BBR, the

fine-tuned handler has a higher distance than the handler Abagnale

returned.

6.3 Impact of DSL Input
We use the student CCAs to evaluate the impact of the input DSL

on Abagnale’s results. In Figure 6a, we show Abagnale’s results

from three DSLs: a Delay DSL (Listing 1), which includes RTT and

rate signals, with constraints of depth 4 and up to 7 or 11 nodes

(Delay-7 and Delay-11), and the Vegas DSL, which additionally

includes a macro encoding the common sub-expression (RTT −
minRTT) × ack-rate

MSS
, with depth 5 and up to 11 nodes (Vegas-11).

We observe that with Delay-7, the best-scoring handler cannot

capture the behavior of this CCA, while the best-scoring handler

from Delay-11 starts to capture the triangular pattern. Finally, using

Vegas-11 enables the macro, which frees up sketch nodes for other

operations. This handler comes closest to matching the input trace’s

behavior.

In contrast, we show the result for student CCA #3 in Figure 6b. In

this case, the best handler uses the Delay-11 DSL, not Vegas-11. This

is because the DSL components that are part of the Vegas DSL but

not the Delay DSL do not play a part in student CCA #3. This makes

the search space bigger, which in turns means that if we timeout a

search at any point, we are less likely to have already explored the

lowest-distance sketch. So, even though the lowest-distance sketch

was in both the space Abagnale explores with Vegas-11 as its input

DSL and the space corresponding to Delay-11, by the time these

searches timed out, Abagnale with Delay-11 had already evaluated

it and saved it, but Abagnale with Vegas-11 had not.

7 Related Work

Program Synthesis. Traditional approaches for program synthesis

with examples (PBE) [22, 25, 30, 31] find a program that satisfies all

given examples. Although this is the main focus of PBE research,

there is some work [35] on handling cases where examples may

have noise. In this scenario, prior work also formulated the synthe-

sis problem as an optimization problem. However, they consider

discrete data such as string or tabular data where the noise is limited

and discrete, leaving the remaining parts intact and uncorrupted. In

our case, we produce a trace of outputs for the same inputs observed

in the collected trace and compare them to the outputs visible in

the original trace. While we use the DTW distance to measure how

good our synthesized CCA is, prior work on strings can use simpler

methods like the number of failed examples or the edit distance

between strings. Moreover, Abagnale uses the distance metric not

only to evaluate a candidate handler’s merit, but also to guide the

search with our bucket prioritization strategy (§4.4).

Smaller DSLs result in a smaller search space and faster perfor-

mance but finding a small DSL expressive enough to capture the

intended behavior is a challenging task. Chan et al. [14] proposed

to start with a generic large DSL and use gradient descent to find

a sub-DSL that is effective for a specific problem. They train on

several benchmarks and reward sub-DSLs that can quickly solve

benchmarks and penalize those that fail to solve. Abagnale also has

sub-DSLs for each class of CCAs from the Linux Kernel. Given a

network trace, Abagnale runs a CCA classifier to map the trace to

a known CCA in the Linux Kernel and uses that sub-DSL.

Synthesis of CCAs. Mister880 [24] first proposed using program

synthesis to reverse-engineer CCAs. Mister880 makes several sim-

plifying assumptions that make it unsuitable for analyzing real

CCAs. For example, it only considers a single simulated packet

trace, and cannot cope with trace noise. Additionally, Mister880’s

simulation relies on an SMT solver for the simulation procedure,
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and does not scale to real-world traces, which can be hundreds of

times larger than Mister880’s simulated traces. It also attempts to

fully enumerate the search space, which is impractical for all but

the simplest CCAs. However, with Abagnale, we do take inspira-

tion from Mister880’s event-driven structure and use of distance to

evaluate candidate CCAs.

Meanwhile, CCmatic [1, 2] recently proposed program synthesis

techniques to produce novel congestion control algorithms that

satisfy desired properties. This is fundamentally a different problem

than reverse-engineering; while with Abagnale we seek to provide

fidelity to an extant CCA, Agarwal et al.’s work need only consider

a CCA’s performance in some specific setting.

8 Conclusion
In this paper we described a system, Abagnale, that combines

existing and novel techniques in program synthesis with domain-

specific knowledge of CCAs to take a first step towards reverse-

engineering the behavior of arbitrary real-world CCAs. This process

is today currently fraught with uncertainty and difficulty; most

efforts at CCA analysis simply stop with providing trace collection

and performance reports. We argue that automated andmechanized

reverse-engineering, such as with Abagnale, should be an important

technique in the toolbox of the modern CCA researcher. The results

from our synthesis techniques, even when they do not precisely

match the ground-truth implementation, reliably give insights into

the signals and structure a target CCA uses.
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