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Abstract
This paper introduces a new metric, “elasticity,” which characterizes
the nature of cross-traffic competing with a flow. Elasticity captures
whether the cross traffic reacts to changes in available bandwidth. We
show that it is possible to robustly detect the elasticity of cross traffic
at a sender without router support, and that elasticity detection can
reduce delays in the Internet by enabling delay-controlling congestion
control protocols to be deployed without hurting flow throughput. Our
results show that the proposed method achieves more than 85% accu-
racy under a variety of network conditions, and that congestion control
using elasticity detection achieves throughput comparable to Cubic
but with delays that are 50–70 ms lower when cross traffic is inelastic.
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1 Introduction
Achieving high throughput and low delay has been a key goal of
congestion control research for decades. An important category of
proposals is delay-controlling congestion control protocols. To min-
imize delays while avoiding “bufferbloat” [16], these schemes (e.g.,
Vegas [2], FAST [45], LEDBAT [38], Sprout [46], Copa [1]) reduce
their rates as delays increase, unlike buffer-filling methods like Cu-
bic [19], NewReno [21], and Compound [39] that must fill buffers to
elicit congestion signals (packet losses or ECN). Delay-controlling
protocols offer a deployable path towards reducing queuing delay in
the Internet; unlike active queue management [14, 36] or packet sched-
uling mechanisms [33, 40], they do not require changes to routers.
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There is, however, a major obstacle to deploying delay-controlling
protocols on the Internet: their throughput suffers when competing
against flows that compete for bandwidth more aggressively (e.g., Cu-
bic [19], NewReno [21], BBR [6], etc.) at a shared bottleneck. For ex-
ample, a Cubic flow steadily increases its rate in the absence of packet
loss or ECN, causing queuing delays to rise; in response to these
increasing delays, a competing delay-controlling flow will reduce its
rate. The Cubic flow then grabs this freed-up bandwidth. The through-
put of the delay-controlling flow plummets, but delays don’t reduce.

Is it possible to achieve the benefits of a delay-controlling protocol
without lowering throughput? In this paper, we present a practical
design to achieve precisely this goal. The key ingredient of our
approach is a new method, Nimbus, to detect whether competing
traffic at a bottleneck link is elastic or not using only end-to-end delay
and rate measurements. We define a flow to be elastic if it increases
its rate when it senses that more bandwidth is available at the shared
bottleneck, and decreases it otherwise. All other flows are inelastic.
Correspondingly, the cross traffic as a whole is elastic if it contains
any elastic flows, and it otherwise inelastic.

A congestion-controlled flow backlogged at the transport layer
is elastic. However, many flows on the Internet (even congestion-
controlled flows) are not backlogged; examples include application-
limited flows, short TCP flows that fit within the initial congestion win-
dow, constant bitrate (CBR) flows, and even video streams when the
available bandwidth exceeds the maximum video bitrate. Such flows
do not react to changes in available bandwidth and are thus inelastic.

Our key observation is that when Nimbus deems cross traffic to
be inelastic, the sender can use a delay-controlling protocol to reduce
delays for both the sender and the cross traffic without worrying about
losing throughput. Otherwise, it can switch to a TCP-competitive
protocol like Cubic (or whatever is considered dominant) to compete
well without attempting to reduce delays.

Elasticity is a basic property of a backlogged congestion-controlled
flow and does not depend on specifics such as its congestion control
algorithm or round-trip time (RTT). We use this property to design
a robust elasticity detector.A Nimbus sender measures elasticity by
modulating its rate with sinusoidal pulses to create small fluctuations
in traffic at the bottleneck at a specific frequency (e.g., 5 Hz). Con-
currently, it estimates the rate of the cross traffic using measurements
of its own send and receive rates, and computes the cross traffic’s
frequency response via the Fast Fourier Transform (FFT) to determine
if its rate oscillates at the same frequency. If so, the sender concludes
that the cross traffic contains elastic flows; if not, it is inelastic.

Many flows using delay-controlling algorithms are elastic. Thus,
in the future, if delay-controlling protocols become widely deployed,
Nimbus might miss out on some opportunities to control delays when
competing against delay-controlling elastic cross-traffic flows. For
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example, if an elastic cross-traffic flow uses Copa (a delay-controlling
scheme), then in principle it would be possible to achieve low delay
and high throughput by also running Copa (or some other proto-
col compatible with Copa). However, this would require inferring
the cross traffic’s specific congestion control protocol; simply using
a delay-controlling scheme like Vegas against Copa would lead to
throughput loss. We sidestep this challenge by focusing on detecting
elasticity, which suffices to ensure no throughput loss compared to the
prevalent deployed algorithm(s). We leave detecting other properties
of cross traffic (like the congestion control protocol), which could ex-
pand the set of scenarios where we can reduce delays, to future work.

It is also possible that one or more cross-traffic flows also use
Nimbus. Because long-lived Nimbus traffic is elastic, in this case
the Nimbus flows would switch to their TCP-competitive modes. To
maintain Nimbus flows’ ability to use delay-controlling algorithms in
scenarios where all non-Nimbus traffic is inelastic, we extend Nimbus
based on the insight that Nimbus flows can communicate with each
other through frequency modulation to collectively determine which
mode to operate in.
Key results. We demonstrate the benefits of using elasticity
detection for congestion control with NimbusCC, a congestion
controller that uses Nimbus to switch between TCP-competitive and
delay-controlling modes. We implement NimbusCC using CCP [34]
in Linux. NimbusCC can support various protocols in each mode.
We report results using Vegas, Copa (default “delay” mode), and
BasicDelay (a new method that uses our cross traffic rate estimator),
as examples of delay-controlling protocols, and Cubic and NewReno
as examples of TCP-competitive protocols. Our experimental results
(§7) show that:
(1) Nimbus is robust to a variety of cross traffic conditions,

achieving more than 85% detection accuracy even when the
cross traffic is a highly dynamic mix of inelastic and elastic flows
of different sizes(§7.1), and when it includes multiple flows with
different RTTs or congestion control protocols. These results
hold across a wide range of buffer sizes, RTTs, bottleneck link
rates, active queue management (AQM) schemes, flow sizes,
and fractions of cross traffic.

(2) NimbusCC achieves throughput within 10% of the ideal value
against elastic traffic made up of a variable number of TCP
flows, whereas Copa is 54% lower. NimbusCC also achieves
60 ms lower mean delay than Cubic against Poisson-distributed
inelastic cross traffic.

(3) When cross traffic is modeled from a flow-size distribution
measured at a WAN link [3], NimbusCC achieves throughput
comparable to Cubic and BBR, but with 50 ms lower median
delay. Copa has slightly better (5 ms) median delay but achieves
40% lower throughput than NimbusCC and Cubic whenever
cross traffic is substantially elastic. Similar results hold when
the cross traffic contains elastic flows using different congestion
control protocols.

(4) On 25 Internet paths, NimbusCC achieved a throughput at
least as high as Cubic with lower delays on 60% of the paths
and similar delays on the other 40%. Compared to BBR,
NimbusCC’s throughput was 10% lower, but the mean packet
delay was 40–50 ms lower.

Elasticity detection is a general technique and while we explore its
use in congestion control, we believe it is further applicable to other

use cases—e.g., for aggregate traffic control between sites [4] and
in speed-testing tools to inform users not only of the rate and delay,
but also the nature of the cross traffic on particular paths (and hence
whether using a different congestion control protocol could improve
throughput or delay).

2 Related Work
Copa [1] aims to maintain a bounded number of packets in the
bottleneck queue. Copa induces a periodic pattern of sending rate,
which nearly empties the queue once every five RTTs. This helps
Copa flows obtain an accurate estimate of the minimum RTT and
the queuing delay. In addition, Copa uses this pattern to detect the
presence of non-Copa flows: it expects the queue to be nearly empty
at least once every 5 RTTs, provided only Copa flows with similar
RTTs share the bottleneck link. If this does not occur, Copa switches
to a TCP-competitive mode.

This method is sensitive to variations in cross traffic (e.g., ar-
rival/departure of flows), the control protocol used by the cross traffic
flows, and even their RTTs. For these reasons, we find that Copa suf-
fers from both false positives (increased delay) and, more importantly,
false negatives (lower throughput) (see §5, §7.1 and §7.2). Unlike
Copa, Nimbus does not look for a specific pattern in the RTTs. Instead
it directly estimates elasticity by measuring whether the cross traffic
reacts to rate fluctuations over a few seconds in the frequency domain.
This method is more robust and can be applied to any combination of
TCP-competitive and delay-controlling algorithms, whereas Copa’s
approach relies on the specific dynamics of its rate controller.

BBR [6] estimates the bottleneck bandwidth 𝑏 and minimum RTT
𝑑. It paces traffic at 𝑏 while capping the number of in-flight packets
to 2×𝑏×𝑑. To estimate the bottleneck, BBR periodically increases
its rate over 𝑏 for about one RTT and then reduces it for the following
RTT. BBR uses this sending-rate pattern to obtain estimates of 𝑏;
specifically, it tests if the observed rate exceeds the current estimate
𝑏 in the rate-increase phase. However, BBR doesn’t use these pulses
to infer the nature of cross traffic.

PCC-Vivace [9] uses an online learning algorithm to adapt its
sending rate to maximize a utility function that incorporates the
achieved rate, delay, and loss rate. Our experiments (§5, §7.1) show
that Vivace cannot achieve both low delay with inelastic cross traffic
and compete fairly with elastic TCP flows.

3 Cross-Traffic Estimation
We present a simple new method to estimate the total rate of cross
traffic at the sender (§3.1). Then, we show how to detect whether the
cross traffic contains any elastic flows, describing the key principles
(§3.2) and a practical method (§3.3).

Figure 1 shows our network model and introduces some notation.
A sender communicates with a receiver over a single bottleneck link
of rate 𝜇. The bottleneck link is shared with cross traffic, consisting
of an unknown number of flows, each of which is either elastic or
inelastic. 𝑆 (𝑡) and𝑅(𝑡) denote the time-varying sending and receiving
rates, respectively, while 𝑧 (𝑡) is the total rate of the cross traffic.
Operating regime. Our technique requires some degree of traffic
persistence. The sender must be able to create sufficient pulses and
observe the impact on cross traffic over a period of time. Thus, it
is best suited for long flows. Fortunately, it is for such transfers
that delay-controlling schemes are useful, because short flows are
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Figure 1: Network model. The time-varying total rate of cross traffic
is 𝑧 (𝑡 ) . The bottleneck link rate is 𝜇. The sender’s transmission rate is
𝑆 (𝑡 ) , and the rate of traffic received by the receiver is𝑅 (𝑡 ) .

unlikely to cause significant queueing delay [16]. The detector is
designed for a single bottleneck link with a stable rate, and uses a
link-rate estimator similar to BBR’s. When these conditions do not
hold, the detector can become inaccurate and have false positives. Our
detector conservatively classifies cross traffic as elastic in these cases
(with high likelihood, discussed in §6 and §7.3). When applied to
congestion control, the detector will thus choose a TCP-competitive
mode in these scenarios. Thus, while such false positives might cause
the sender to miss out on opportunities to reduce delay, they will not
cause it to lose throughput.

Our technique is most effective when the elastic flows react on
a timescale of a few RTTs. If an elastic flow is slower to react, it can
go undetected with short pulses. By using long pulses Nimbus can
detect such sluggish elastic flows but at the cost of some congestion.
Since the majority of elastic traffic on the Internet reacts on RTT
timescales (e.g., ACK-clocked flows), we use short pulses. For
ease of exposition, we describe Nimbus in the context of detecting
ACK-clocked flows, but the technique applies more generally (e.g.,
correctly classifying fast-reacting rate-based flows).

3.1 Estimating the Rate of Cross Traffic

In Fig. 1, the total traffic into the bottleneck queue is 𝑆 (𝑡) +𝑧 (𝑡), of
which the receiver sees 𝑅(𝑡). As long as the bottleneck link is busy
(i.e., its queue is not empty), and the router treats all traffic the same
way, the ratio of 𝑅(𝑡) to 𝜇 must be equal to the ratio of 𝑆 (𝑡) and the
total incoming traffic, 𝑆 (𝑡)+𝑧 (𝑡).1 Using this property, we propose
the following estimator for 𝑧 (𝑡):

𝑧 (𝑡)=𝜇 𝑆 (𝑡)
𝑅(𝑡) −𝑆 (𝑡) . (1)

We estimate 𝑆 (𝑡) and 𝑅(𝑡) by considering 𝑛 packets at a time:

𝑆𝑖,𝑖+𝑛 =
𝑛𝑏𝑦𝑡𝑒𝑠

𝑠𝑖+𝑛−𝑠𝑖
, 𝑅𝑖,𝑖+𝑛 =

𝑛𝑏𝑦𝑡𝑒𝑠

𝑟𝑖+𝑛−𝑟𝑖
, (2)

where 𝑛𝑏𝑦𝑡𝑒𝑠 is the number of bytes in the 𝑛 packets, 𝑠𝑘 is the time at
which the sender sends packet 𝑘, 𝑟𝑘 is the time at which the sender
receives the ACK for packet 𝑘 , and the units of the rates are bytes per
second. 𝑆 (𝑡) and 𝑅(𝑡) must be measured over the same 𝑛 packets.

The above quantities can be calculated using the timestamps of
the first and the last packet and hence are unaffected by delayed
acknowledgements (delayed ACKs). Our implementation in
CCP [34] uses the Linux kernel’s measurements of 𝑆 (𝑡) and𝑅(𝑡) over
the last RTT—the same method used by the BBR implementation.

1This property holds even when the bottleneck link is dropping packets as long as the
drop rate is the same for the sender-to-receiver flow and the cross traffic.
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Figure 2: Instantaneous delay measurements do not reveal elasticity. The
bottom plot shows the total queueing delay (orange) and the self-inflicted
delay (green). The experiment contains one background Cubic flow in
the elastic region (30–90 s) and CBR cross traffic in the inelastic region
(90–150 s).

Like BBR [6], we use the maximum received rate to estimate 𝜇,
taking care to avoid incorrect estimates due to ACK compression.2

We have conducted several tests with various patterns of cross traf-
fic to evaluate the effectiveness of this𝑧 (𝑡) estimator (including scenar-
ios with packet drops and delayed ACKs). The overall error is small:
the 50th and 95th percentiles of the relative error are 1.3% and 7.5%,
respectively. Unlike prior work on estimating cross traffic rate [23, 25,
41], our method is in-band and does not use any probe packets; how-
ever, it relies on the property that the sender is persistently backlogged.

3.2 Elasticity Detection: Principles

We now turn to designing an online estimator for a sender to
determine if the cross traffic includes any elastic flows.3 A strawman
approach might attempt to detect elastic flows by estimating the
contribution of the cross traffic to queueing delay. For example, the
sender can estimate its own contribution to the queueing delay—i.e.,
the “self-inflicted” delay—and if the total delay is significantly higher
than the self-inflicted delay, conclude that the cross traffic is elastic.

This scheme does not work. To see why, consider the experiment
in Figure 2, where a Cubic flow shares a link with elastic and inelastic
traffic in two separate time periods. The self-inflicted queueing delay
for the Cubic flow (green, bottom figure) looks the same in the elastic
and inelastic phases. The reason is that a flow’s share of the queue
occupancy is proportional to its throughput, which is roughly the
same in the two phases (top figure). Because the Cubic flow gets
50% of the bottleneck link, its self-inflicted delay is roughly half
of the total queueing delay always (orange, bottom figure). This
example suggests that instantaneous measurements cannot be used
to distinguish between elastic and inelastic cross traffic.

To detect elasticity, tickle the cross traffic! Our method detects
elasticity by monitoring how the cross traffic responds to induced
traffic variations at the bottleneck link over a period of time. The
key observation is that elastic flows react in a predictable way to rate
fluctuations at the bottleneck. Consider, for example, long-running
Cubic or NewReno flows, which are ACK-clocked. For these flows,
if an ACK is delayed by a time duration 𝛿 , then the next packet
transmission will also be delayed by 𝛿 . Therefore changes in the rate
of packet arrivals at the receiver cause similar changes in the sending
rate after one RTT via the ACKs. By contrast, the sending rate of
inelastic flows does not depend on the receive rate.

We induce changes in the inter-packet spacing of cross traffic
at the bottleneck link by sending packets in pulses. We take the

2A variety of other techniques [10, 11, 22, 24, 28, 29, 31] could also be used to estimate 𝜇.
3Receiver participation will improve accuracy by avoiding the need to estimate 𝑅 (𝑡 )
from ACKs at the sender, but would be a little harder to deploy.
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(b) Inelastic cross traffic
Figure 3: Cross traffic’s reaction to pulses. The pulses change the inter
packet spacing for cross traffic. Elastic traffic reacts to these changes
after a RTT, while inelastic traffic does not.

desired sending rate, 𝑆 (𝑡), and alternate between sending at rates
higher and rates lower than 𝑆 (𝑡), ensuring that the mean rate is 𝑆 (𝑡).
Sending in such pulses (e.g., modulated on a sinusoid) changes the
inter-packet spacing of the cross traffic departing the bottleneck link
in a controlled manner. If the cross traffic contains elastic flows, then
because of the induced changes in the ACK clocks of those flows,
their rates will react to our pulses. When we increase our rate, the
elastic cross traffic will reduce its rate in the next RTT, and vice versa.
If enough of the cross traffic is elastic, then our sender can measure
and detect these fluctuations in the cross traffic rate.

Fig. 3a and Fig. 3b compare the responses of elastic (Cubic) and
inelastic (constant bit rate) cross traffic when the sender transmits
packets in sinusoisal pulses at frequency 𝑓𝑝 = 5 Hz. 𝑆 (𝑡) is the
sender’s rate and 𝑧 (𝑡) is the estimated cross traffic rate computed
using Eq. (1). The path has a minimum RTT of 50 ms and a buffer
size of 100 ms (2× the bandwidth-delay product). The elastic flow’s
sending rate after one RTT is inversely correlated with the pulses in
the sending rate, while the inelastic flow’s sending rate is unaffected.

3.3 Elasticity Detection: Practice

To produce a practical method to detect cross traffic using this idea,
we must address three challenges:
(1) Pulses in the sending rate must induce a measurable change in

𝑧, but not congest the bottleneck link.
(2) Because there is natural variation in cross traffic, and noise in

𝑧, it is not easy to perform a robust comparison between the
predicted change in 𝑧 and the measured 𝑧.

(3) Because the sender does not know the RTTs of cross traffic
flows, it does not know when to look for the predicted response
in the cross traffic rate.

The first method we developed to solve these problems measured
the cross-correlation between 𝑆 (𝑡) and 𝑧 (𝑡). A cross-correlation near
zero would be considered inelastic cross traffic, whereas a significant
non-zero value would indicate elastic cross traffic. We found that this
approach works well (with square-wave pulses) if the cross traffic
is substantially elastic and has a similar RTT to the flow trying to
detect elasticity, but not otherwise. The trouble is that because elastic
cross traffic will react after its RTT, 𝑆 (𝑡) and 𝑧 (𝑡) must be aligned
using the cross traffic’s RTT, which is not easy to infer. Moreover,
the elastic flows in the cross traffic may have different RTTs, making
the alignment even more challenging.

From time to frequency domain. We have developed a method,
Nimbus, that overcomes the challenges stated above. It uses two ideas.
First, the sender modulates its packet transmissions using sinusoidal
pulses at a known frequency 𝑓𝑝 , with amplitude equal to a modest
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Figure 4: Cross traffic FFT for elastic and inelastic traffic. Only the FFT
for elastic traffic has a pronounced peak at 𝑓𝑝 (5 Hz).

fraction (e.g., 25%) of the bottleneck link rate. These pulses induce a
noticeable change in inter-packet times at the link without causing con-
gestion, because the queues created in one part of the pulse are drained
in the subsequent part, and the period of the pulses is short (e.g.,
𝑓𝑝 =5 Hz). By using short pulses, we ensure that the total burst of data
sent in a pulse is a small fraction of the typical bottleneck queue size.

Second, the sender looks for periodicity in the cross traffic rate
at frequency 𝑓𝑝 , using a frequency domain representation of the
cross-traffic rates. We use the Fast Fourier Transform (FFT) of the
time series of the cross traffic estimate 𝑧 (𝑡) over a short time interval
(e.g., 5 seconds). Detecting periodicity in the frequency domain is
more robust than the time-domain, for the same reason that frequency
modulation provides better signal-to-noise ratio than amplitude
modulation [37]: it is less affected by variations in the cross traffic
rate and measurement noise. Further, observing the cross traffic’s
response at a known frequency, 𝑓𝑝 , yields a method that is robust
to the presence of multiple elastic flows with different RTTs, and
even, different congestion control protocols, because all elastic
flows (irrespective of RTT and protocol) will exhibit rate oscillations
at the frequency 𝑓𝑝 . As a result, there will be an overall response
at frequency 𝑓𝑝 in the cross traffic, equal to superposition of the
responses of the individual elastic flows at frequency 𝑓𝑝 .4

Fig. 4 shows the FFT of the 𝑧 (𝑡) time-series produced using
Eq. (1) for examples of elastic and inelastic cross traffic, respectively.
Elastic cross traffic exhibits a pronounced peak at 𝑓𝑝 compared
to the neighboring frequencies, while for inelastic traffic the FFT
magnitude is spread across many frequencies. The magnitude of
the peak depends on how much of the cross traffic is elastic; the
more elastic the cross traffic, the sharper the peak at 𝑓𝑝 . Therefore,
rather than compare the peak at 𝑓𝑝 to a pre-determined threshold, we
compare it to the magnitude of the nearby frequencies.

We define the elasticity metric, 𝜂, as follows:

𝜂=
|𝐹𝐹𝑇𝑧 (𝑓𝑝 ) |

max𝑓 ∈(𝑓𝑝+𝜖,2𝑓𝑝−𝜖) |𝐹𝐹𝑇𝑧 (𝑓 ) |
(3)

Eq. (3) compares the magnitude of the FFT at frequency 𝑓𝑝 to the
peak magnitude in the range from just above 𝑓𝑝 to just below 2𝑓𝑝 . We
use 𝜖 = 0.5 Hz (with 𝑓𝑝 =5 Hz) in our implementation. If 𝜂 is less than
a threshold 𝜂𝑡ℎ𝑟𝑒𝑠ℎ (≥ 1), then the cross traffic is deemed inelastic;
otherwise, it is elastic.

3.4 Setting Parameters for Elasticity Detection

Detection threshold. In practice, cross traffic can be a mix of elastic
and inelastic flows. In such scenarios, we want our detector to be sen-
sitive to the presence of any elastic flows, since even one elastic flow

4In theory, the response of flows with different RTTs may cancel each other out, but this
is very unlikely since it requires specific combinations of RTTs. We have not seen this
problem occur in our experiments (§7.2).
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Figure 5: Distribution of elasticity with varying elastic fraction of cross
traffic. The cross traffic consists of an elastic Cubic flow and inelastic
Poisson-distributed traffic with different rates. Completely inelastic cross
traffic has𝜂 close to one, while completely elastic cross traffic exhibits a
high𝜂. Cross traffic with some elastic fraction also exhibits high elasticity
(𝜂>2).

Figure 6: Asymmetric sinusoidal pulse. The pulse has period𝑇 = 1/𝑓𝑝 .
The positive half-sine lasts for𝑇 /4 with amplitude 𝜇/4, and the negative
half-sine lasts for the remaining duration, with amplitude 𝜇/12. The two
half-sines cancel out each other over one period.

can eventually grab all the link bandwidth from a delay-controlling
flow. Fig. 5 shows the CDF of elasticity (𝜂) as the fraction of bytes
belonging to elastic flows in the cross traffic varies. 𝜂 varies due to
variations in the cross traffic but its value generally increases as more
of the cross traffic becomes elastic: the median values range from
𝜂=1 for purely inelastic traffic to 𝜂=10 for purely elastic traffic.

The value of 𝜂𝑡ℎ𝑟𝑒𝑠ℎ dictates which type of traffic is detected more
reliably. A large 𝜂𝑡ℎ𝑟𝑒𝑠ℎ will ensure that inelastic traffic is always
classified correctly, but it increases the chance that cross traffic with
a small elastic component is misclassified as inelastic (potentially
hurting throughput). With a small 𝜂𝑡ℎ𝑟𝑒𝑠ℎ , on the other hand, elastic
traffic will be classified correctly, but we may occasionally classify
inelastic traffic as elastic, losing an opportunity to reduce delays. To
balance these concerns, we choose a small fixed threshold 𝜂𝑡ℎ𝑟𝑒𝑠ℎ =2,
which in Fig. 5 corresponds to classifying cross traffic with a 25%
elastic component correctly 75% of the time. We evalutate the impact
of 𝜂𝑡ℎ𝑟𝑒𝑠ℎ on congestion control performance in D.2.

Pulse shaping. Rather than a pure sinusoid, we use an asymmetric
sinusoidal pulse, as shown in Fig. 6. In the first one-quarter of the
pulse cycle, the sender adds a half-sine of a certain amplitude (e.g.,
𝜇/4) to 𝑆 (𝑡); in the remaining three-quarters of the cycle, it subtracts
a half-sine with one-third of the amplitude used in the first quarter of
the cycle (e.g., 𝜇/12). The reason for this asymmetric pulse is that it
enables senders with low sending rates, 𝑆 (𝑡), to generate pulses. For
example, for a peak amplitude of 𝜇/4, a sender with 𝑆 (𝑡) as low as
𝜇/12 can generate the asymmetric pulse shown in Fig. 6; a symmetric
pulse with the same peak rate would require 𝑆 (𝑡)> 𝜇/4.

Our pulses produce an observable pattern in the FFT when the
cross traffic is elastic. Using asymmetric sinusoidal pulses creates
harmonics at multiples of the pulse frequency 𝑓𝑝 . However, these
harmonics do not affect 𝜂 (see Eq. (3)), which only uses the FFT in
the frequency band [𝑓𝑝 ,2𝑓𝑝−𝜖).
Pulse duration. What should the duration,𝑇 , of the pulse be? The
answer depends on two factors: first, the interval over which 𝑆 and
𝑅 are measured (with which the sender computes 𝑧), and second, the
amount of data we are able to send in excess of the mean rate without

causing congestion. If𝑇 were smaller than the measurement interval
of 𝑆 and 𝑅, the perturbation to the cross traffic rate during one part
of the pulse will be averaged out during the rest of the pulse, resulting
in no impact on 𝑧 (𝑡). But𝑇 cannot be too large because the sender
transmits in excess of the mean rate 𝑆 (𝑡) for𝑇 /4. In particular, the
size of the burst sent in a pulse is 2

𝜋
𝜇
4
𝑇
4 =

𝑇 𝜇
8𝜋 ≈ 0.04𝜇𝑇 . If𝑇 is equal

to the RTT, this is 4% of the bandwidth-delay product (BDP) at the
peak. Moreover, since pulsing doesn’t increase the average sending
rate, there is no increase in the average queuing delay (§5).

We set𝑇 to a large RTT value observed on the Internet, for example
𝑇 =200 ms, with the rationale that router buffers are typically provi-
sioned to avoid packet losses for one such RTT, and because our imple-
mentation measures 𝑆 and𝑅 over one RTT. We measure rates over one
RTT because sub-RTT measurements are confounded by burstiness
in packet transmissions (e.g., caused by ACK compression [26]).

If the cross traffic reacts slower than the pulse duration, Nimbus
might misclassify those flows. Using longer pulses could improve
detection accuracy in such scenarios but it might cause congestion.
We evaluate this alternative for detecting PCC-Vivace, a rate-based
scheme (not ACK-clocked), in Appendix B.3.

FFT duration. Computing FFTs over a small duration allows quick
responses to changes in cross traffic, but it increases errors due to
noise. For example, natural variations in inelastic cross traffic over
small periods can cause false peaks at 𝑓𝑝 in the FFT, resulting in
a misclassification. The FFT duration also impacts the frequency
resolution of the FFT; in particular, 𝜖 in Eq. (3) must be larger
than 1/FFT_Duration. We choose an FFT duration of 5 seconds
(corresponding to 25 pulses) and 𝜖 =0.5 Hz to balance these concerns.
While Nimbus is robust in detecting the presence of long-lived
elastic flows, it might still missclassify transient elastic cross-traffic.
Typically, elastic flows take multiple RTTs to ramp up their rates
and grab bandwidth from competing flows. As a result, even when
the Nimbus sender is operating in the delay-controlling mode, such
transient elastic traffic is unlikely to adversely affect throughput. In
§7.1, we show that even when the cross-traffic is a highly dynamic
mix of inelastic and elastic flows of different sizes, Nimbus achieves
high detection accuracy and congestion control performance.

4 NimbusCC
NimbusCC is a congestion control system that uses mode switching.
It has a TCP-competitive mode in which the sender transmits using
a TCP-competitive congestion control algorithm (e.g., Cubic), and
a delay-control mode that uses a delay-controlling algorithm (e.g.,
Copa). NimbusCC switches between the two modes using our
elasticity detector, Nimbus.

4.1 Mode Switching

At any given time, NimbusCC transmits data at the time-varying
rate dictated by the congestion control algorithm running at that time.
It modulates this rate with asymmetric sinusoidal pulses (Fig. 6).
NimbusCC uses the pulsing parameters described in §3.4, calculating
𝑆 and 𝑅 over one window’s worth of packets. It computes the FFT
for the 𝑧 measurements reported in the last 5 seconds to calculate
elasticity (𝜂) using Eq. (3), and it picks the mode by comparing 𝜂 to
𝜂𝑡ℎ𝑟𝑒𝑠ℎ =2 (§3.4).

We support Cubic and NewReno for the TCP-competitive mode
and Copa’s default mode and Vegas for the delay-control mode.
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We also implemented a simple delay-controlling algorithm, called
BasicDelay, which relies on our cross traffic rate estimator to
calculate the spare capacity at the sender.

BasicDelay uses a typical control loop inspired by prior explicit
control protocols [17, 27, 42]. Let 𝑆 be the sending rate and 𝑧 be the es-
timated cross traffic rate, both measured over the last window of pack-
ets. Also, let𝑥 be the current RTT, and𝑥𝑚𝑖𝑛 be the minimum observed
RTT. Upon receiving an ACK, BasicDelay sets its current rate to:

Rate←𝑆+𝛼 (𝜇−𝑆−𝑧)+𝛽 𝜇
𝑥
(𝑥min+𝑑𝑡 −𝑥), (4)

where 𝛼 and 𝛽 are constants smaller than 1, and 𝑑𝑡 is a target queuing
delay. The term (𝜇 − 𝑆 − 𝑧) is the sender’s estimate of the spare
capacity in the last RTT. By adding an 𝛼-fraction of the spare capacity
to 𝑆 (𝑡), BasicDelay tries to get closer to the ideal rate. The second
term in the above rule seeks to maintain a specified queuing delay,
𝑑𝑡 , to prevent the queue from both growing too large or going empty.
Recall that our cross traffic estimator, Eq. (1), requires a non-empty
queue to estimate 𝑧.

To safeguard against losing throughput in the first FFT duration
(when there is not enough history to determine the elasticity), Nim-
busCC flows start in the TCP-competitive mode. NimbusCC takes
special care in initializing the rate when switching to TCP-competitive
mode. NimbusCC sets the rate (and equivalent window) to the rate
that was used 5 seconds ago because the elasticity detector takes 5
seconds (FFT Duration) to detect elastic cross traffic. During this time,
the elastic traffic could cause a reduction in the delay-control mode’s
rate. Hence, NimbusCC resets its rate to the rate at the beginning of
the 5-second detection period.

4.2 Multiple NimbusCC Flows

What happens when a bottleneck is shared by multiple NimbusCC
flows? If all the NimbusCC flows pulse at the same frequency (𝑓𝑝 ),
then they will all detect a peak in the FFT at that frequency and stay
in the TCP-competitive mode (regardless of the other cross traffic).
Thus they will achieve the same throughput as the TCP-competitive
protocol and compete fairly with each other, but will not maintain low
delays when there is no elastic cross traffic.

We can, however, expand the set of scenarios where Nimbus can
reduce delays. Ideally, we want all the NimbusCC flows to remain in
delay-control mode when there is no elastic cross traffic, and use TCP-
competitive mode otherwise. One approach is for different NimbusCC
flows to pulse at different frequencies. But this approach cannot
scale to more than a few flows, because the set of distinguishable
frequencies is limited (recall that the pulse period 𝑇 cannot be too
small).

The pulser and the watchers. We propose a different approach. One
of the NimbusCC flows assumes the role of the pulser, while the
others are watchers. They coordinate without explicit communication;
each NimbusCC flow is unaware of the identities, or even existence,
of the others.

The pulser sends data by modulating its rate with asymmetric
sinusoids. The pulser uses two different frequencies, 𝑓𝑝𝑐 in TCP-
competitive mode, and 𝑓𝑝𝑑 in delay-control mode. The values of these
frequencies are fixed and agreed upon beforehand; we use 𝑓𝑝𝑐 =5 Hz
and 𝑓𝑝𝑑 =6 Hz in our experiments.5

5These values are in accordance with bounds on𝑇 and 𝑓 described in §4.

A watcher infers whether the pulser is pulsing at frequency 𝑓𝑝𝑐 or
frequency 𝑓𝑝𝑑 by computing the FFT of its receive rate,𝑅, at these two
frequencies. It then picks the mode corresponding to the larger peak
to match the pulser’s mode. Note that since a watcher is not pulsing, it
can detect the pulser’s pulses in its own receive rate, 𝑅; i.e., it does not
even need to estimate 𝑧. The pulser, on the other hand, cannot look
at its own 𝑅 to detect pulses in the cross traffic, since it will end up
detecting its own pulses.

For multiple NimbusCC flows to maintain low delays during times
when there is no elastic cross traffic on the link, the pulser must classify
watcher traffic as inelastic. Note that from the pulser’s perspective, the
watcher flows are part of the cross traffic; thus, to avoid confusing the
pulser, the rate of watchers must not react to the pulses of the pulser.
To achieve this goal, a watcher applies an exponentially weighted
moving average (EWMA) filter to its transmission rate before sending
data. The EWMA filter mutes all frequencies in the sending rate that
exceed min(𝑓𝑝𝑐 ,𝑓𝑝𝑑 ).
Pulser election. A distributed and randomized election decides which
flow is the pulser and which are watchers. If a NimbusCC flow deter-
mines that there is no pulser (by seeing that there is no peak in the FFT
at the two potential pulsing frequencies), then it decides to become
a pulser with a probability proportional to its transmission rate:

𝑝𝑖 =
𝜅𝜏

FFT Duration
× 𝑅𝑖

𝜇
. (5)

Each flow makes decisions periodically, e.g., every 𝜏 = 10 ms, 𝜅 is
a constant, and 𝑅𝑖 is the receive rate of the 𝑖𝑡ℎ flow. This rule ensures
that the expected number of flows that become pulsers over the FFT
duration is at most 𝜅. To see why, note that the expected number of
pulsers is equal to the sum of the probabilities in Eq. (5) over all the
decisions made by all flows in the FFT duration. Since

∑
𝑖𝑅𝑖 ≤ 𝜇 and

each flow makes (FFT Duration/𝜏) decisions, these probabilities sum
up to at most 𝜅.

It is also not difficult to show that the number of pulsers within an
FFT duration has approximately a Poisson distribution with a mean
of 𝜅 [12]. Thus the probability that after one flow becomes a pulser, a
second flow also becomes a pulser before it can detect the pulses of
the first flow in its FFT measurements is 1−𝑒−𝜅 . Therefore,𝜅 involves
a tradeoff: a smaller 𝜅 will lead to fewer conflicts but will take longer
to elect a pulser. In our experiments, we use 𝜅=1.

For any value of 𝜅, there is a non-zero probability of more than
one concurrent pulser.6 In such cases, all the NimbusCC flows will
stay in TCP-competitive mode: they could miss opportunities to
reduce delay but will not lose throughput relative to the status quo.
As a further optimization, if there are multiple pulsers, then each
pulser will observe that the cross traffic has more variation than the
variations it creates with its pulses. This can be detected by comparing
the magnitude of the FFT of the cross traffic 𝑧 (𝑡) at 𝑓𝑝 with the FFT of
the pulser’s receive rate𝑅(𝑡) at 𝑓𝑝 . If the cross traffic’s FFT has a larger
magnitude at 𝑓𝑝 , the NimbusCC pulser concludes that there must be
multiple pulsers and switches to a watcher with a fixed probability.
Deployment scenarios. This protocol for coordinating multiple
NimbusCC flows is only necessary if it is likely that NimbusCC
flows will often compete with each other (§6). In other situations,
NimbusCC will achieve low delays against inelastic traffic and

6In scenarios outside Nimbus’s intended operating regime, multiple concurrent pulsers
are more likely.
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this extension is unnecessary. Nevertheless, recall that to ensure
fail-safe operation, NimbusCC starts in TCP-competitve mode
before switching to delay-controlling mode if it is safe to do so. If the
protocol for multiple NimbusCC flows is needed, then it is reasonable
to expect elastic cross-traffic flows to use NimbusCC; thus, in this
case most flows would be capable of delay-control, and NimbusCC
should start in delay-controlling mode instead.
Remark. This scheme for coordinating pulsers is similar to
receiver-driven layered multicast (RLM) congestion control [32]. In
RLM, a sender announces to the multicast group that it is conducting
a probe experiment at a higher rate, so any losses incurred during the
experiment should not be heeded by the other senders. In contrast,
in Nimbus, there is no explicit coordination channel, and the pulsers
and watchers coordinate via their independent observations of cross
traffic patterns. The pulser election also shares similarities with
carrier sense multiple access (CSMA) protocols. Similar to a CSMA
sender, a watcher looks for the absence of any pulser (free channel)
on the shared bottleneck, and switches probabilistically to a pulser
to try to avoid multiple pulsers (collisions). However, unlike CSMA
protocols, collisions are harder to detect in Nimbus.

5 Visualizing NimbusCC
We illustrate NimbusCC on a synthetic workload with time-varying
cross traffic. We emulate a bottleneck link in Mahimahi [35], a link
emulator. The network has a bottleneck rate of 96 Mbit/s, a minimum
RTT of 50 ms, and 100 ms (2 BDP) of buffering. We compare two
mode-switching protocols, NimbusCC (Cubic+BasicDelay) and
NimbusCC (Cubic+Copa), with Cubic, BBR, Vegas, and PCC-Vivace
(all from Linux), and Copa (from Copa’s authors).

The cross traffic varies over time between elastic, inelastic, and
a mix of the two. We generate inelastic cross traffic using Poisson
packet arrivals at the specified mean rate. Elastic cross traffic uses
Cubic, via iperf [43].

Fig. 7 shows the throughput and queuing delays for the various pro-
tocols, as well as the correct fair-share rate. Table 1 summarizes the de-
viation from fair-share throughput in the elastic (20–120 s) and inelas-
tic (0–20 and 120–180 s) regions, and the mean queuing delay in the in-
elastic region. The delay in the elastic region is similar for all schemes.

Throughout the experiment, both NimbusCC variants achieve
throughput close to the fair-share rate and low (≤15 ms) queuing
delays in the presence of inelastic cross traffic. With elastic cross
traffic, both variants switch to TCP-competitive mode within 5
seconds and achieve close to their fair share. The delays during
this period approach the buffer size because the competing traffic
is buffer-filling; the delays return to their previous low value (15 ms)
within 5 seconds after the elastic flows complete. NimbusCC stays in
the correct mode throughout the experiment, except for one interval in
the elastic period. The deviation from fair-share in the elastic region
is because Cubic is not perfectly fair to itself over short time periods.

Cubic achieves its fair-share rate but experiences high delays (80
ms) throughout. BBR’s throughput is often much higher than its fair
share with high delays even against inelastic cross traffic, which prior
work has also observed [1, 20]. Vegas suffers from low throughput
in the presence of elastic cross traffic as it reacts to packet delays.

While Copa generally uses the correct mode it frequently switches
mode unnecessarily; Copa makes 28 switching errors in the elastic
region, while NimbusCC only switches once. In the elastic period,
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Figure 7: Performance on a 96 Mbit/s Mahimahi link with 50 ms delay
and 2 BDP of buffering while varying the rate and type of cross traffic
as denoted at the top of the graph. 𝑥M denotes 𝑥 Mbit/s of inelastic
Poisson cross traffic. 𝑦T denotes 𝑦 long-running Cubic cross-flows. The
solid black line indicates the correct time-varying fair-share rate that
the protocol should achieve given the cross traffic. For each scheme, the
solid line shows throughput and the dotted line shows queuing delay.
The cross traffic contains elastic flows from 20–120 s. For Nimbus and
Copa, the red shaded regions indicate times spent in the wrong mode (e.g.,
delay-controlling with elastic cross traffic).

Copa’s frequent mode switches lower its throughput (14 Mbit/s)
compared to NimbusCC (27.5 Mbit/s) and fair-share rate (e.g., see
100–120 s). Further, by draining queues periodically, Copa incurs
some underutilization against inelastic traffic (e.g., 140–160 s).

Vivace competes unfairly with elastic traffic. At times, Vivace fails
to maintain low delays against inelastic cross traffic and incurs heavy
packet loss (e.g., 160–180s).

6 Discussion
Rate-based protocols. Table 2 summarizes how Nimbus classifies
different types of cross traffic. Recall that our method relies on the
cross traffic responding to variations induced by pulses on an RTT
timescale. This is true of all ACK-clocked protocols, which are
classifed as elastic.
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Scheme Throughput Δ Throughput Δ QDelay
Elastic Inelastic Inelastic

NimbusCC −10% 0% 12ms
Cubic+BasicDelay

NimbusCC −15% −1% 14ms
Cubic+Copa

Cubic +12% 0% 78ms
BBR +61% −2% 56ms
Vegas −79% −15% 3ms
Copa −54% −19% 18ms

PCC-Vivace +61% −2% 27ms

Table 1: Average queuing delay (in ms) in the inelastic region, and
deviation from fairshare throughput in elastic and inelastic regions
from Fig. 7. NimbusCC is the only scheme to achieve close to fair-share
throughput and low delays.

Cross Traffic Elastic ACK-Clocked Classification

Cubic Yes Yes Elastic
NewReno Yes Yes Elastic

Copa Yes Yes Elastic
Vegas Yes Yes Elastic
BBR Yes If CWND-limited Elastic*

PCC-Vivace Yes No Inelastic*
Fixed window Yes Yes Elastic
App. limited No No Inelastic
Const. stream No No Inelastic

Table 2: Classification by Nimbus.

For BBR, recent work has showed that it is ACK-clocked when
competing with other flows [44]; Nimbus thus classifies it as elastic.
We therefore find that NimbusCC (with Cubic as the TCP-competitive
protocol) achieves similar throughput to Cubic when competing
against BBR (Appendix §B.2).

Some rate-based protocols may not react on RTT timescales. For
example, Nimbus in its default configuration classifies PCC-Vivace
as inelastic because it does not react quickly enough to Nimbus’s
pulses. Increasing the pulse duration helps Nimbus to correctly
classify such flows as elastic (Appendix B.3). Increasing the pulse
duration, however, may also increase queuing delays. Since most
elastic traffic today is ACK-clocked, we use a small pulse duration
by default. In the future, if rate-based protocols become widely
deployed, the pulse duration could be adjusted accordingly.

Error in link rate estimation. Nimbus requires an estimate of the
link rate. If this estimate has too much error, the detector classifies
traffic as elastic even if it is inelastic. NimbusCC will then operate
in TCP-competitive mode, achieving similar throughput and delay as
the status quo. To understand why, define 𝑧 (𝑡) as the estimate of the
cross traffic rate, 𝑧∗ (𝑡) as the actual cross traffic rate, 𝜇 as the estimate
of the link rate, and 𝜇∗ as the actual link rate. Then, from Eq. (1):

𝑧 (𝑡)=𝜇 𝑆 (𝑡)
𝑅(𝑡) −𝑆 (𝑡), 𝑧∗ (𝑡)=𝜇∗ 𝑆 (𝑡)

𝑅(𝑡) −𝑆 (𝑡) (6)

Combining the equations above, we get

𝑧 (𝑡)= 𝜇

𝜇∗
𝑧∗ (𝑡)+

( 𝜇
𝜇∗
−1

)
𝑆 (𝑡) (7)

When the link rate estimate is inaccurate, 𝑧 (𝑡) is a linear combination
of the cross traffic rate and the sending rate. As the error in the link
rate estimate increases, the contribution of the sending rate to 𝑧 (𝑡)
increases. Since the sending rate oscillates at the pulse frequency,

𝑧 (𝑡) also oscillates, and all cross traffic (regardless of its nature) is
classified as elastic.

Time-varying links and multiple bottlenecks. On time-varying
links (e.g., wireless links), the elasticity detector cannot obtain an ac-
curate estimate of the link rate and will therefore tend to classify traffic
as elastic, for the same reason described above. In scenarios with mul-
tiple bottleneck links,7 the elasticity detector breaks, but again in a pre-
dictable way. Similar to the incorrect 𝜇 case, the cross traffic estimate
is a combination of the actual cross traffic rate and the sending rate in
such scenarios, and Nimbus will tend to classify traffic as elastic (see
Appendix D.4). We evaluate Nimbus under such conditions in §7.3.

Insufficient share of the bottleneck. To generate pulses, the detector
must control a fraction of the traffic at the bottleneck link (≥ 𝜇/12).
If the sender’s rate is not high enough, NimbusCC does not modulate
the sending rate and switches to the TCP-competitive mode to guard
against losing throughput from misclassification. Therefore when
there are a large number of flows competing at the bottleneck, each
with a tiny share of the link bandwidth, NimbusCC is similar to the
status quo. Note that in such scenarios, the cross traffic is more likely
to be elastic.

Prevalence of inelastic and elastic cross-traffic. NimbusCC’s effec-
tiveness in improving delay on Internet paths depends on how often
cross traffic is inelastic (and whether elastic cross traffic flows use
NimbusCC as in §4.2). While our experiments on paths between differ-
ent cloud regions and a small number of residential hosts suggest that
scenarios where cross traffic is predominantly inelastic might be com-
mon (§7.5), a full understanding would require a large-scale measure-
ment study. We do not attempt to provide a verdict on this question.

NimbusCC is most useful if elastic cross-traffic is neither rare or
dominant, since it can identify the appropriate operating mode on a
flow-by-flow basis. If the majority of cross-traffic is either elastic or
inelastic in practice, NimbusCC would mostly operate in the corre-
sponding mode, though its mode switching would still be useful as a
safeguard when the cross traffic is not of the predominant class.

7 Evaluation
We have implemented NimbusCC using CCP [34], which provides
a convenient way to express the signal processing operations in
user-space code. It uses estimates of 𝑆 , 𝑅, the RTT, and packet losses
from the Linux kernel every 10 ms.

We evaluate our elasticity detection method and NimbusCC.
We use the Mahimahi emulator and investigate the performance
benefits (§7.1) of elasticity detection with realistic workloads,
its robustness (§7.2), and its behavior in scenarios where the
assumptions underlying the method are not met (§7.3). We also
evaluate the effectiveness of the pulser-watcher extension (§7.4).
Unless specified otherwise, the topology in these experiments
consists of a single bottleneck link with a stable link rate and we
do not use the pulser-watcher extension. Finally, we evaluate the
performance of NimbusCC on real Internet paths (§7.5).

7.1 Performance Benefits from Elasticity Detection

We evaluate the delay and throughput benefits of mode switching
via elasticity detection using trace-driven emulation. We generate

7We expect such scenarios to be rare, since congestion in the Internet typically occurs
at the network edge [15, 30].
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cross traffic from an empirical distribution of flow sizes derived
from a wide-area packet trace from CAIDA [3]. This packet trace
was collected at an Internet backbone router on January 21, 2016
and contains over 30 million packets recorded over 60 seconds. We
generate Cubic cross traffic flows with flow sizes drawn from this
data, with flow arrival times generated by a Poisson process to offer a
fixed average load to fill 50% of the link (48 Mbit/s). The experiment
duration is 360 s and consists of 100,000 cross traffic flows.

The cross traffic consists of a highly dynamic mix of short and long
flows, with a heavy-tailed distribution of flow sizes, ranging from
10 KB to 100 MB (average flow size is 22 KB). Very short flows with
size less than the initial congestion window (< 15 KB) are inelastic as
they transmit all data at once and don’t react to the fluctuations in the
available bandwidth, whereas long (backlogged) flows are elastic. The
traffic trace consists of periods with a mix of elastic and inelastic cross
traffic, along with periods with only inelastic cross traffic flows. There
is high churn in the number of flows, and the cross traffic exhibits
periods of high load that span from a few RTTs to several minutes.

We start one backlogged flow using different congestion control
algorithms (NimbusCC, Cubic, Copa, Vegas, PCC-Vivace or BBR)
and sharing a 96 Mbit/s bottleneck link with the cross traffic flows.
The propagation RTT is 50 ms and the buffer size is 1.2 Mbytes
(2 bandwidth-delay products). NimbusCC uses Cubic in the TCP
competitive mode and BasicDelay (§4.1) in the delay-controlling
mode. For BasicDelay we used 𝛼 =0.8, 𝛽 =0.5 and 𝑑𝑡 =12.5 ms.

NimbusCC reduces delays while achieving fair-share throughput.
Fig. 8a shows the distribution of per-packet RTT and Fig. 8b shows
the deviation from fair-share throughput (over 5-second intervals) for
various schemes. NimbusCC and Cubic achieve the lowest deviation
from fair share among these schemes. NimbusCC’s deviation profile
is comparable to Cubic (note that both NimbusCC and Cubic deviate
from the fair share since Cubic is not perfectly fair to itself over
short time periods). The reason is that NimbusCC correctly switches
to Cubic mode in the presence of elastic flows. Additionally, by
switching to delay-controlling mode in the absence of elastic flows,
NimbusCC achieves lower RTTs, with a median delay only 10 ms
higher than Vegas and >50 ms lower than Cubic and BBR.

Cost of incorrect mode-switching. Copa has a slightly lower
median delay than Nimbus, but at a high cost: its throughput is
significantly lower than the fair-share at the 10th and 25th percentiles
(corresponding to times with significant elastic traffic). Fig. 8c
shows this more clearly, comparing the rates of NimbusCC and
Copa during a 60-second interval. Because of the high variations
in the cross traffic rate, the queuing delay can drop below Copa’s
detection threshold even in the presence of elastic flows (e.g., due
to departure of other cross flows). Copa often incorrectly operates
in its default delay-control mode against elastic cross traffic (e.g.,
115–120, 130–140 s). These incorrect switches cause Copa to nearly
stop sending. Since the elastic flows competing with Copa in such
periods achieve a higher throughput than the same flows against
NimbusCC (which attains the fairshare rate), they complete more
quickly, freeing up bandwidth that Copa grabs subsequently. This is
why in periods like 120–130 s, which immediately follow a low-rate
period for Copa, it achieves a higher rate than NimbusCC. Also, since
NimbusCC competes fairly with elastic flows rather than yielding
bandwidth, it has a slightly higher delay than Copa at the tail.
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It has higher delays than Copa and Vegas, but those two schemes have
lower throughput than the fair share against elastic cross traffic (see
figure below).
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(c) Copa incorrectly switches to its default delay-control mode even when
competing against elastic traffic, unlike NimbusCC.

Figure 8: Performance of NimbusCC on a cross traffic workload derived
from a packet trace collected at a WAN router.

While both schemes achieve the same overall average throughput8,
NimbusCC is better suited to applications that value stable bandwidth,
e.g., video streaming, interactive web browsing, online gaming,
etc. In such applications, sending at a very low rate for several
seconds when cross traffic has elastic flows is unacceptable. Note that
elastic traffic was present for only about 25% of the duration of this
experiment with Copa, which is why we see Copa under-performing
only at the lower percentiles.

NimbusCC helps cross traffic. The 95th percentile flow completion
time (FCT) of cross traffic flows reduces by 3-4× compared to BBR,
and 1.3× compared to Cubic for short (≤ 15 KB) flows (Appendix A).
In contrast, PCC-Vivace is unfair to the background flows (positive
deviation from fairshare). It grabs significantly more bandwidth than
all the other schemes and keeps the buffer near-full more than half the
time. The result is that many background flows do not complete, and
their completion times are over 100×worse than with other schemes.
PCC-Vivace also shows higher delays that any other scheme; the
median delay is 90 ms higher than NimbusCC.

8Any work-conserving scheme will achieve the same throughput in this experiment
because the cross traffic sends a fixed number of bytes.
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Figure 9: The elasticity metric closely tracks elastic cross traffic (ground
truth measured independently from the rate of ACK-clocked flows).
Green-shaded regions indicate inelastic periods.
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Figure 10: Mean throughput and queuing delay (lower delay on the
right) with video cross traffic. NimbusCC achieves similar throughput
as Cubic but reduces delays and performs better than the other schemes.
Copa and Vegas achieve low throughput.

Elasticity detection is accurate. To define ground truth, we note
that short flows (< 10 packets) transmit all data at once, without any
rate adjustments. We thus classify a cross traffic flow as elastic if it
is larger than the initial congestion window of 10 packets, finishing
in greater than a RTT.

The top chart in Fig. 9 shows the fraction of bytes belonging to
elastic flows as a function of time. The bottom chart shows the output
of the elasticity detector with the dashed threshold line at 𝜂=2. The
shading corresponds to periods when NimbusCC is in delay-control
mode. Shaded regions correlate well with the periods when the true
fraction of elastic traffic is low (e.g., < 0.3), while white regions
correlate well with periods when the elastic fraction is high. Unlike
Copa, our elasticity detector observes fluctuations in cross traffic
over a period of time in the frequency domain, and the accuracy is
less susceptible to variations in the cross traffic rate. Despite the
churn in cross traffic flows, the overall accuracy of our elasticity
detector is over 90% when the fraction of the elastic traffic is high (>
30%). When the fraction of elastic traffic is low, NimbusCC operates
primarily in the delay-controlling mode. In this case, the elastic flows
in the cross traffic are relatively short. Such short elastic flows do not
last long enough to grab bandwidth from the NimbusCC flow.
Performance against different congestion control protocols. We
repeat the experiment in Fig. 8 but with cross traffic consisting of
an equal (on average) mix of Cubic, NewReno and BBR flows. The
results are similar to the previous experiment: NimbusCC achieves
lower delays than Cubic for a similar throughput profile, while Copa
and Vegas lose throughput when cross traffic is elastic. The reason
is that, regardless of the congestion control protocol, the elastic cross
traffic flows react to Nimbus’s pulses, and can therefore be classified
correctly (Appendix B.1).
Performance with video cross traffic. Video streams can be
application-limited (e.g., when the client playback buffer is full) or

network-limited (e.g., when the client is downloading a high-bitrate
chunk) at different points in time. Therefore video traffic can exhibit
both inelastic and elastic behavior. We compare the performance of
congestion control algorithms running against cross traffic consisting
of a 4k DASH [8] video stream using Cubic on a 48 Mbit/s link
with 50 ms RTT for 80 seconds. Fig. 10 shows the throughout and
delay of the various schemes. Because of effective mode switching,
NimbusCC achieves similar throughput as Cubic at 15 ms lower
delay. Nimbus recognizes application-limited video traffic as
inelastic, allowing the sender to control delays in those cases; it rarely
recognizes network-limited elastic traffic as inelastic, so does not
wrongly reduce its rate as Copa does. Note that the figure shows the
rate of a backlogged flow competing against video cross traffic; the
total link utilization with all the schemes was at least 90%.

7.2 Robustness of Elasticity Detection

We evaluate the robustness of Nimbus under a variety of network
and traffic conditions. Unless specified otherwise, we run NimbusCC
as a backlogged flow on a 96 Mbit/s bottleneck link with a 50
ms propagation RTT and a 100 ms drop-tail buffer (2 BDP). We
consider three categories of synthetic cross traffic sharing the link
with NimbusCC: (i) inelastic Poisson-distributed traffic; (ii) fully
elastic traffic (backlogged NewReno flows); and (iii) an equal mix
of inelastic and elastic traffic. The duration of each experiment is 120
seconds. We evaluate accuracy: the fraction of time Nimbus correctly
detects the presence of elastic cross traffic. For each experiment, we
report the mean accuracy of the detector across 5 runs.
Impact of cross traffic RTT. We vary the cross traffic’s minimum
RTT from 10 ms to 200 ms (0.2 – 4× NimbusCC’s RTT). We find
that varying cross traffic RTT does not reduce accuracy. For purely
inelastic and purely elastic traffic, the accuracy is more than 98% in
all cases, while for mixed traffic, the accuracy is more than 85% in all
cases (a random guess would have only achieved 50%). Regardless
of the cross traffic RTT, the elastic flows respond to fluctuations
created by Nimbus, generating a peak in the cross traffic FFT at the
oscillation frequency. The cross traffic’s RTT affects the phase, but
not the amplitude of the peak in the FFT.
A mix of RTTs in the cross traffic. We vary the number of elastic
cross traffic flows from 1 to 5, where the RTT of 𝑛th flow in 20·𝑛 ms.
In case the cross traffic contains elastic flows, all the elastic flows
oscillate at Nimbus’s pulse frequency. As a result, the sum of the
rates of these elastic flows also oscillates,9 and the traffic is correctly
classified as elastic. For purely elastic and inelastic traffic, Nimbus
achieves an average accuracy of 98% across 5 runs, while for mixed
traffic, the mean accuracy is greater than 90% in all cases. In other
words, heterogeneity in RTTs of cross-flows does not degrade the
accuracy of elasticity detection.
Pulse size, link rate, and offered cross traffic load. We perform
a multi-factor experiment varying Nimbus’s pulse size from 1/16
to 1/2 the link rate, the fair share of the bottleneck link rate from
12.5%—75% (by varying the cross traffic load), bottleneck link rates
set to 96, 192, and 384 Mbit/s. The accuracy for purely elastic cross
traffic is always higher than 95%. while the average accuracy over
all the points for the other two traffic mixes is more than 90%. Fig. 11
9Since the RTTs are different, the elastic flows’ oscillations will differ in phase and the
oscillations could in theory cancel each other out leading to mis-classification, but it
requires specific combinations of RTT and is unlikely.
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traffic under control is small. Increasing pulse size increases robustness.
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has higher RTT than the flow’s RTT (right).

shows the average detection accuracy over the other two categories
of cross traffic (mix + purely inelastic). The classification accuracy is
not sensitive to cross traffic load. Nimbus’s use of asymmetric pulses
enables a sender to create fluctuations in the cross traffic even when
the sending rate is low. As a result, the detection accuracy remains
high under high cross traffic load.

In general, increasing the pulse sizes improves accuracy because
the elasticity detector can create a more easily observable change
in the cross traffic sending rates. An increase in the link rate results
in higher accuracy for a given pulse size and Nimbus link share
because the variance in the rates of inelastic Poisson cross traffic
reduces with increasing cross traffic sending rate, reducing the
number of false peaks in the cross traffic FFT. However, the elasticity
detector has low accuracy (∼60%) when it uses high pulse sizes and
controls a low fraction of the link rate. We believe that this is due to
a quirk in the way the Linux networking stack reports round-trip time
measurements under sudden sending rate changes.

Comparison with Copa. We now compare the classification
accuracy of Nimbus with Copa. First, we generate inelastic cross
traffic at different rates and measure the accuracy. We consider both
constant-bit-rate (CBR) and Poisson cross traffic.

Fig. 12 (left) shows that Nimbus has high accuracy in all cases, but
Copa’s accuracy drops sharply when the cross traffic occupies over
80% of the link. This result highlights a pitfall of Copa’s approach: set-
ting an operating mode based on the absolute value of queueing delays
is problematic. With a high inelastic cross traffic load, Copa is unable
to drain the queue quickly enough (i.e., every 5 RTTs), which throws
off its detector. In contrast, the elasticity detector estimates elasticity
through delay variations caused by its pulses, and is more robust.

Next, we ran a backlogged NimbusCC or Copa flow competing
against a backlogged NewReno flow. We vary the RTT of the
NewReno flow between 1−4× the RTT of the NimbusCC/Copa flow.
Fig. 12 (right) shows that Copa’s accuracy degrades as the RTT of the
cross traffic increases; Nimbus’s accuracy is much higher, dropping
only slightly when the cross traffic RTT is 4× larger than NimbusCC.
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Figure 13: Impact of incorrect 𝜇. When the error is high, all the traffic
is classified as elastic and NimbusCC operates in TCP-competitive mode.

An elastic cross-flow with a large RTT increases its rate slowly
enough to evade detection by Copa. Therefore, Copa drains the queue
as it expects and concludes the absence of non-Copa cross traffic.
This behavior continues until the cross-flow has grown to offer a
load close to the link rate, when it starts interfering with Copa’s
queue draining. By contrast, Nimbus is more robust since it is based
on the time series of variations of the cross traffic rate. Moreover,
even when the classification accuracy for Copa is higher, it makes
frequent mode-switches and is suspectible to lose throughput against
elastic traffic. Appendix C shows the throughput and queueing delay
dynamics of Copa and NimbusCC.

Further robustness results and impact of parameters. In
Appendix D.1, we explore variations in buffer size, RTT of the
Nimbus flow, and presence of active queue management schemes,
and we show that Nimbus is robust to these settings. In Appendix D.2,
we evaluate the sensitivity of Nimbus’s performance to the detection
threshold parameter (𝜂𝑡ℎ𝑟𝑒𝑠ℎ). We repeat the experiment in Fig. 8
for different values of 𝜂𝑡ℎ𝑟𝑒𝑠ℎ (from 1 to 6), and find that although
the performance is similar for a range of values, increasing 𝜂𝑡ℎ𝑟𝑒𝑠ℎ
generally reduces delays but can cause NimbusCC to lose throughput
against elastic cross traffic. In Appendix D.3, we demonstrate the
versatility of NimbusCC in supporting different combinations of
algorithms for its delay-controlling and TCP-competitive modes.

7.3 Performance Outside Intended Operating Regime

The elasticity detector is designed for a single bottleneck link with
stable rate and relies on an estimate of the bottleneck link rate.
What happens when these conditions do not hold? As explained in
§6, NimbusCC is designed to classify the cross traffic as elastic in
such scenarios, thereby switching to the TCP-competitive protocol
and achieving similar throughput to the status quo. In this section,
we evaluate how effective this mechanism is by comparing the
throughput of NimbusCC with the baseline TCP-competitive protocol
(referred to as “status quo”) in several settings, and also report the
per-packet queuing delay. We evaluate the performance for two cross
traffic scenarios: (i) inelastic Poisson-distributed traffic, and (ii) fully
elastic traffic (backlogged NewReno flows).

Error in link rate estimation. We explicitly supply an incorrect link
rate estimate to NimbusCC. We vary the error in the link rate estimate
from −50% to +50% of the real link rate value (96 Mbit/s). Fig. 13
reports the average results across 5 runs (120 s each). NimbusCC
achieves throughput similar to status quo in all the scenarios. The
classification accuracy is high (> 95%) for elastic cross traffic in all
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Cross Traffic Throughput Δ Q Delay Classification Accuracy

Elastic -1% 103 ms 95%
Inelastic -1% 70 ms 39%

Table 3: Performance on time-varying links.

Figure 14: Classification accuracy degrades at higher aggregation
durations.

the cases. When the error rate is high (> 12.5%), inelastic cross traffic
is also classified as elastic and NimbusCC fails to control delays.
Performance on time-varying links. The experiment consists of a
single bottleneck with a time-varying link rate. We model the rate of
the bottleneck link as a random walk; the rate can change by ± 20
Mbit/s every second. Table 3 summarizes the results across 5 such
traces. NimbusCC achieves throughput within 1% of the status quo.
However, the classification accuracy is low against inelastic traffic and
the queuing delay is high (though no higher than the status quo). On
time-varying links, inferring the bottleneck link rate is hard in an end-
to-end manner [17, 18]. When NimbusCC’s estimate of the link rate10

differs substantially from the bottleneck link rate, the cross traffic es-
timator fails, and NimbusCC simply operates in the TCP-competitive
mode regardless of the cross traffic (§6). Thus, on time-varying bottle-
neck links NimbusCC is safe to run and will not lose throughput rela-
tive to the status quo, but it might lose opportunities to control delays.
Links with frame aggregation. We evaluate NimbusCC’s perfor-
mance on links with frame aggregation in two scenarios (Figure 14).
In the first scenario (left), the path of the NimbusCC flows consists
of a fixed capacity wired bottleneck link and a non-bottleneck link
that emulates wireless frame aggregation by aggregating packets
in a certain duration and delivering them in a burst. We vary the
aggregation duration from 2 to 32 ms and evaluate the classification
accuracy against elastic and inelastic traffic in each case. We find
that classification accuracy is high for small values of aggregation
duration. When the aggregation duration is increased to 32 ms, the
noise in the FFT causes the detection accuracy to drop drastically.
In the second scenario (right), the bottleneck link is the same
time-varying link from the previous experiment. Here, we find that
accuracy of Nimbus is governed by errors in link rate estimation and
Nimbus tends to classify all traffic as elastic. However, we find that
when aggregation duration is large, the classification accuracy for
elastic traffic is also poor, which could degrade throughput.
Multiple bottleneck links. The topology consists of two links.
Link 1’s bandwidth is 192 Mbit/s and link 2’s bandwidth is 96 Mbit/s.
The experiment consists of a single NimbusCC flow going through
the two links. Each link has either elastic or inelastic cross traffic
(a cross traffic flow only traverses one of the two links). NimbusCC
achieves throughput comparable to the status quo (within 15%) in
all the cases (see Appendix D.4).

10We use the average bandwidth as the link rate estimate for these experiments.
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Figure 15: Multiple competing NimbusCC flows. Multiple NimbusCC
flows achieve fair sharing of a bottleneck link (top graph). There is
at most one pulser flow at any time; identified by its rate variations.
Together, the flows achieve low delays by staying in delay mode for most
of the duration (bottom graph). The red background shading shows when
a NimbusCC flow was (incorrectly) in competitive mode
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Figure 16: Multiple NimbusCC flows and other cross traffic. There
are 3 NimbusCC flows throughout. Cross traffic in 30-90 s is elastic and
made up of 3 Cubic flows. Cross traffic in 90-150 s is inelastic and made
up of a 96 Mbit/s constant bit-rate stream. NimbusCC flows achieve their
fair share (top) while achieving low delays in the absence of elastic cross
traffic (bottom).

7.4 Multiple NimbusCC

We now evaluate performance when multiple NimbusCC flows share
a bottleneck link in scenarios within Nimbus’s operating regime.11

We run NimbusCC with Vegas as its delay-control algorithm. Fig. 15
demonstrates how NimbusCC flows react as other NimbusCC flows
arrive and leave (there is no other cross traffic). Four flows arrive at a
link with rate 96 Mbit/s and round-trip time 50 ms. Each flow begins
120 s after the last one began and lasts for 480 s. The top half shows
the rates achieved by the four flows over time. Each new flow begins
as a watcher. If the new flow detects a pulser (𝑡 = 120, 240, and 360
s), it remains a watcher. If the pulser goes away or a new flow fails to
detect a pulser, one of the watchers becomes a pulser (𝑡 = 480 and 720
s). The pulser can be identified visually by its rate variations.

The flows share the link equally. The bottom half of the figure
shows the achieved delays with red shading to indicate when one
of the flows is (incorrectly) in TCP-competitive mode. The flows
maintain low RTTs and stay in delay-control mode most of the time.

Fig. 16 demonstrates multiple NimbusCC flows switching in the
presence of cross traffic. We run three NimbusCC flows on an emu-
lated 192 Mbit/s link with a propagation delay of 50 ms. In the first
90 s, the cross traffic is elastic (three Cubic flows), and for the rest
of the experiment, the cross traffic is inelastic (96 Mbit/s constant
bit-rate). The top graph shows the total rate of the three NimbusCC
flows, along with a reference line for the fair-share rate of the aggre-
gate. The graph at the bottom shows the measured queuing delays.

11In other scenarios, it is possible for multiple pulsers to coexist. In such cases, multiple
NimbusCC will not be able to maintain low delays.
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Figure 17: Performance on three example Internet paths. The 𝑥 axis is inverted; better performance is up and to the right. On paths with buffering
and no drops, ((a) and (b)), NimbusCC achieves the same throughput as BBR and Cubic but reduces delays significantly. On paths with significant
packet drops (c), Cubic suffers but NimbusCC achieves high throughput.
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Figure 18: Paths with queuing. NimbusCC reduces the RTT compared
to Cubic and BBR (upto 50ms), at similar throughput.

NimbusCC shares the link fairly with other cross traffic, and achieves
low delays by staying in the delay-controlling mode in the absence of
elastic cross traffic for most of the experiment.

Impact of 𝜅. Increasing 𝜅 reduces the time to elect a pulser, but can
lead to multiple pulsers. We evaluate the impact of𝜅 in Appendix D.5.

7.5 Testing on Internet Paths

We ran NimbusCC on 25 paths between five senders and five
receivers. The servers were EC2 instances located in California,
London, Frankfurt, Ireland, and Paris, all with 10 Gbit/s access
links.12 The receivers were residential hosts, each connected directly
to its Internet router via a 1 Gbit/s Ethernet link. We verified that the
bottleneck in each case was not either access link on the path.

We initiated bulk data transfers using NimbusCC, Cubic, BBR, and
Vegas. We ran one-minute experiments over five hours on each path,
and measured the throughput and mean packet delay. Fig. 17 shows
the throughput and mean delays over three of the paths. The 𝑥 (delay)
axis is inverted; thus, better performance is up and to the right. Nim-
busCC achieves high throughput comparable to BBR in all cases, but
with lower packet delays. Cubic attains high throughput on paths with
deep buffers (Fig. 17a and Fig. 17b), but not on paths with packet drops
or policers (Fig. 17c).13 Vegas attains poor throughput on these paths

12We also ran experiments between pairs of cloud servers but we observed no congestion
on any such path.
13For each path, we also ran experiments in the night (when the cross traffic load was likely
close to 0) and compared the throughput of Cubic and BBR. On the paths where the Cubic
throughput was lower consistently across runs, we observed frequent packet drops without
much variation in RTT. We inferred that the drops either occur at a shallow-buffered bot-
tleneck link or a policer, both of which are known to hurt the throughput of Cubic [6, 13].

because it does not keep the bottleneck link busy and is unable to com-
pete with elastic cross traffic. These trends show the utility of elasticity
detection on Internet paths: it is possible to achieve high throughput
and low delays over the Internet using delay-control algorithms with
the ability to switch to a different competitive mode when required.

Fig. 18 summarizes the results on paths with larger buffers.
NimbusCC’s throughput is similar to Cubic’s and 10% lower
than BBR’s but with much lower delays (40–50 ms lower than
BBR). NimbusCC’s lower mean delay indicates that the cross
traffic at the bottleneck link often did not contain long backlogged
elastic flows. We believe that during these periods, the cross traffic
was application-limited (e.g., video streams where the available
bandwidth exceeded the maximum video bitrate). It is in such
cross-traffic scenarios that NimbusCC provides the most benefits in
terms of delay reduction while still achieving high throughput.

8 Conclusion
We showed that characterizing the elasticity of cross traffic is a useful
building block for improving congestion control. We introduced
Nimbus, a method for detecting and quantifying the elasticity of cross
traffic. Nimbus uses asymmetric sinusoidal pulses to modulate the
sending rate and observes the frequency response of the cross traffic
rate, taking advantage of the property that elastic cross traffic can
be made to oscillate at a pulsing frequency set by sender. Nimbus
relies only on end-to-end rate and delay measurements and requires
no changes to the routers. We presented several experiments to
demonstrate the robustness and accuracy of our proposed method.
We also showed that elasticity detection enables transport protocols
to combine the best aspects of delay-control methods while being
competitive with elastic flows when necessary.

This work does not raise any ethical issues.
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provides low cross-flow FCT, but its own rate is low.

Appendices are supporting material that has not been peer-
reviewed.

A Nimbus Helps Cross Traffic
In the setup from §7.1, we measure the flow completion time (FCT)
of cross traffic flows. Fig. 19 compares the 95th percentile (p95)
FCT for flows of different sizes. The FCTs are normalized by the
corresponding value for NimbusCC at each flow size (i.e., NimbusCC
is always 1).

BBR and PCC-Vivace exhibits much higher FCT at all cross
traffic flow sizes compared to the other protocols, consistent with
the unfairness seen in the experiment in §5.

For small flows (≤15 KB), the p95 FCT with NimbusCC and Copa
are comparable to Vegas and lower than Cubic. With NimbusCC, p95
FCT of cross traffic at higher flow sizes are slightly lower than Cubic
because of small delays in switching to TCP-competitive mode. At
all flow sizes, Vegas provides the best cross traffic flow FCTs, but
its own flow rate is dismal; Copa is more aggressive than Vegas but
less than NimbusCC, but at the expense of its own throughput (§7.1).

B Cross-traffic Congestion Control Protocols

B.1 Multiple Elastic Flows using different Congestion Control
Protocols.

We repeat the experiment in Fig. 8 but with cross traffic consisting
of an equal (on average) mix of Cubic, NewReno and BBR flows.
Whenever a new cross traffic flow starts, with an equal probability
it chooses one of the three congestion control protocols. Fig. 20
shows performance of various schemes. The results are similar to
the experiment in Fig. 8: NimbusCC achieves lower delays than
Cubic for a similar throughput profile, while Copa and Vegas lose
throughput when cross traffic is elastic. The reason is that, regardless
of the congestion control protocol, the elastic cross traffic flows react
to Nimbus’s pulses, and can therefore be classified correctly.

B.2 NimbusCC & Cubic v. BBR

We now evaluate how well a NimbusCC (Cubic + BasicDelay) flow
competes with a BBR flow. In this experiment, the cross traffic is
1 BBR flow and the bottleneck link bandwidth is 96 Mbit/s. We
vary the buffer size from 0.5 BDP to 4 BDP. Fig. 21 shows the
mean throughput of NimbusCC and Cubic flows while competing
with BBR over a 2-minute experiment. NimbusCC achieves same
throughput as Cubic for all buffer sizes, which matches Cubic’s
expected behavior against BBR [5].
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Figure 20: Performance with WAN cross traffic consisting of an equal
mix of Cubic, NewReno and BBR flows. The deviation profile of Nim-
busCC is similar to that of Cubic, however, NimbusCC reduces delays.

Figure 21: NimbusCC’s performance against BBR is similar to that
of Cubic. Both NimbusCC and Cubic compete against 1 BBR flow on
a 96 Mbit/s link. For various buffer sizes, NimbusCC achieves the same
throughput as Cubic.

Figure 22: By modifying the pulse frequency, Nimbus correctly classifies
PCC-Vivace, a rate-based elastic protocol, as elastic.

B.3 Elastic Flows, No ACK Clocking

Nimbus aims to detect ACK-clocked elastic flows that react quickly to
changes in available bandwidth on RTT timescales. This experiment
demonstrates Nimbus’s ability to also detect slow-reacting elastic
cross traffic by tuning the pulse frequency. We ran a NimbusCC
flow against a PCC-Vivace flow on a 96 Mbit/s link with 100ms of
buffering. Fig. 22 shows the CDF of the elasticity metric, 𝜂, for two
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different pulse frequencies, 𝑓𝑝 . PCC-Vivace is not ACK-clocked and
does not react to Nimbus’s pulses at 𝑓𝑝 = 5 Hz. As a result 𝜂 is below
the threshold most of the time. Reducing the pulse frequency to 2
Hz creates pulses with a longer duration. PCC-Vivace reacts to these
slower variations in available bandwidth, and is correctly classified
as elastic (𝜂>𝜂𝑡ℎ𝑟𝑒𝑠ℎ).

Changing the pulse frequency involves a trade-off. Increasing
the pulse duration will increase queuing delays and congestion.
But if slowly-reacting elastic protocols become widely deployed,
competing with them using Nimbus for delay-control opportunities
will require an increase in pulse duration.

C Copa Mode Switching Errors
We explore the dynamics of NimbusCC and Copa’s mode switching
in experiments from the scenarios in §7.2.

C.1 CBR Cross Traffic

Fig. 23 shows throughput and delay profile for Copa and NimbusCC
while competing against inelastic CBR traffic. We consider two
scenarios: (i) CBR occupies a small fraction of the link (24 Mbits/s,
25%) and (ii) CBR occupies majority of the link (80 Mbit/s, 83%).
When the CBR traffic is low (Fig. 23 a and Fig. 23 b), both Copa and
Nimbus identify it as non-buffer-filling and inelastic, respectively,
and achieve low queuing delays.

When the CBR’s share of the link is high (Fig. 23 c), Copa
incorrectly classifies the cross traffic as buffer-filling and stays in
competitive mode, leading to high queuing delays. Copa relies on
a pattern of emptying queues to detect whether the cross traffic is
buffer-filling or not. However, when the rate of cross traffic is 𝑧, the
fastest possible rate at which the queue can drain is 𝜇−𝑧, even if Copa
reduces its rate to zero. If the cross traffic occupies 𝑥 fraction of the
link (i.e., 𝑧=𝑥𝜇), then

max(−𝑑𝑄
𝑑𝑡
)=𝜇−𝑧= (1−𝑥)𝜇= (1−𝑥) 𝐵𝐷𝑃

𝑅𝑇𝑇
. (8)

Hence, if the queue size exceeds 5×(1−𝑥)𝐵𝐷𝑃 , Copa won’t be able
to drain the queue in 5 RTTs, and it will mis-classify the cross traffic
as buffer-filling. The queue size can grow large due to a transient
burst or if Copa incorrectly switches to competitive mode. Once
Copa is in competitive mode, it will drive the queues higher, and may
get stuck in that mode.

Nimbus doesn’t rely on emptying queues and correctly classifies
cross traffic as inelastic, achieving low delays (Fig. 23 d).

C.2 Elastic Cross Traffic

Fig. 24 shows throughput and delay over time for Copa and
NimbusCC while competing against an elastic NewReno flow. We
consider two scenarios: (1) both flows have the same propagation
RTT, and (2) the cross traffic’s propagation RTT is 4× higher than
the Copa or NimbusCC flow. When the RTTs are the same (Fig. 24
a and Fig. 24 b), both Copa and Nimbus correctly classify the cross
traffic, achieving their fair share.

When the cross traffic RTT is higher (Fig. 24 c), NewReno ramps
up its rate slowly, causing Copa to mis-classify the traffic and achieve
less than its fair share. Here, Copa achieves 27 Mbit/s but its fair share
is at least 48 Mbit/s (in fact, 77 Mbit/s considering the RTT bias). In
contrast, (Fig. 24 d), Nimbus correctly classifies the cross traffic as
elastic, and NimbusCC achieves its RTT-biased share of throughput.
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(d) NimbusCC: 80 Mbit/s CBR

Figure 23: When the CBR traffic is low (a), Copa classifies the traffic
as non buffer-filling and is able to achieve low queuing delays. But when
the CBR traffic occupies a high fraction (c), Copa incorrectly classifies
the traffic as buffer-filling, resulting in higher queuing delays. In both the
situations (b and d), the elasticity detector correctly classifies the traffic
as inelastic and NimbusCC achieves low queuing delays.

D Other Results

D.1 Buffer size, RTT, and AQM

We vary the bottleneck drop-tail buffer size from 0.25 BDP to 4 BDP
for three categories of cross traffic as in the earlier experiments, with
propagation delays of 25 ms, 50 ms, and 75 ms. We also measured
classification accuracy when the bottleneck link implements PIE [36]
at two target delays (0.25 BDP and 1 BDP) with a propagation delay
of 50 ms. With purely elastic or inelastic traffic, Nimbus has a mean
accuracy (across five runs) of 98% or more in all cases but two, while
with mixed traffic, the accuracy is always 85% or more. In all cases
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(c) Copa: Cross Traffic RTT = 4 × Flow RTT
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(d) NimbusCC: Cross Traffic RTT = 4 × Flow RTT

Figure 24: Queuing delay and throughput dynamics for elastic cross
traffic. When the elastic cross traffic increases fast enough (a), Copa
classifies it as buffer-filling and is able to achieve its fair share. But when
the elastic cross traffic increases slowly (c), Copa incorrectly classifies
the traffic as non-buffer-filling, achieving less than its fair share. In both
the situations (b and d), Nimbus correctly classifies the traffic as elastic
and NimbusCC achieve its fair share.

(including low accuracy ones), NimbusCC achieves its fair-share
throughput and low delays.

Now we discuss the cases with low classification accuracy. First,
with shallow buffers of size less than the product of the delay
threshold 𝑥𝑡 and the bottleneck link rate (e.g., 0.25 BDP when the
round-trip time is 50 ms), Nimbus classifies all traffic as elastic.
Second, with the bottleneck link implementing PIE with small
target delay (e.g., corresponding to 0.25 BDP), Nimbus classifies all
traffic as elastic. In both cases, NimbusCC can incur heavy losses in
delay-control mode as NimbusCC’s target queuing delay of 0.25 BDP
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(b) Deviation from fairshare throughput

Figure 25: Impact of𝜂𝑡ℎ𝑟𝑒𝑠ℎ . With a high𝜂𝑡ℎ𝑟𝑒𝑠ℎ , NimbusCC operates
in delay-controlling mode more often, reducing delays but losing
throughput against elastic cross traffic (see the 10th percentile in the
throughput profile, shown in red)

is comparable to the drop-tail buffer size or target delay of PIE. These
losses interfere with the cross traffic estimator leading to classification
errors (in delay-control mode). However, low accuracy does not
impact the performance of NimbusCC as it achieves its fair-share
throughput and low delays (bounded by the small buffer size for
a drop-tail queue and the delay control threshold of PIE). Further,
classification accuracy decreases when Nimbus’s RTT exceeds its
pulse period. Since Nimbus’s measurements of rates are over one
RTT, any oscillations over a smaller period cannot be observed.

D.2 Impact of 𝜂𝑡ℎ𝑟𝑒𝑠ℎ
We repeat the experiment in Fig. 8 but vary the detection threshold
from 1 to 6. Fig. 25 shows the performance as a function of 𝜂𝑡ℎ𝑟𝑒𝑠ℎ .
𝜂𝑡ℎ𝑟𝑒𝑠ℎ presents a performance trade-off. With a high 𝜂𝑡ℎ𝑟𝑒𝑠ℎ , Nim-
bus classifies traffic as inelastic more frequently. NimbusCC operates
in delay-controlling mode a higher fraction of the time reducing de-
lays. However, at times NimbusCC operates in the delay-controlling
mode incorrectly against elastic cross traffic, losing throughput.
This affect can be seen prominently at the lowest percentiles in the
throughput profile. Similarly, a small 𝜂𝑡ℎ𝑟𝑒𝑠ℎ causes NimbusCC to
miss opportunities for controlling delays against inelastic traffic, but
NimbusCC doesn’t lose throughput against elastic traffic.

D.3 Using different CC Algorithms with NimbusCC

NimbusCC can employ a variety of congestion control algorithms
for its delay-controlling and TCP-competitive modes. We have
implemented Cubic, NewReno, and MulTCP [7] as competitive-
mode algorithms, and BasicDelay, Vegas, FAST [45], and COPA [1]
as delay-controlling algorithms. In Fig. 26, we illustrate two
combinations of delay and competitive mode algorithms sharing
a bottleneck link with synthetic elastic and inelastic cross traffic
active at different periods during the experiment. The fair-share
rate over time is shown as a reference. Both NewReno+BasicDelay
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(b) Cubic + COPA
Figure 26: NimbusCC’s versatility. NimbusCC with different combi-
nations of delay-controlling and TCP-competitive algorithms.

(Fig. 26a) and Cubic+COPA (Fig. 26b) achieve their fair-share rate
while keeping the delays low in the absence of elastic cross traffic.

D.4 Multiple Bottleneck Links

In this section we analyze how multiple bottleneck links affect the
Nimbus elasticity detector. Consider a scenario where a NimbusCC
flow is going through two bottleneck links, with rates 𝜇∗1 and 𝜇∗2 ,
in series. Let 𝑧∗1 (𝑡) and 𝑧∗2 (𝑡) be the cross traffic rate on the two
links respectively. Let 𝑧 (𝑡) be the cross traffic estimate, and 𝜇 be
the bottleneck link rate estimate provided to the elasticity detection
algorithm. We define 𝑅1 (𝑡) and 𝑅2 (𝑡) as the rate at which Link 1
and Link 2 dequeue packets from the NimbusCC flow respectively.
Assuming that both links are fully utilized, we have:

𝑅1 (𝑡)=
𝜇∗1 ·𝑆 (𝑡)

𝑧∗1 (𝑡)+𝑆 (𝑡)
,

𝑅2 (𝑡)=
𝜇∗2 ·𝑅1 (𝑡)

𝑧∗2 (𝑡)+𝑅1 (𝑡)
=

𝜇∗1 ·𝜇
∗
2 ·𝑆 (𝑡)

𝑧∗1 (𝑡) ·𝑧
∗
2 (𝑡)+𝑧

∗
2 (𝑡) ·𝑆 (𝑡)+𝜇

∗
1 ·𝑆 (𝑡)

. (9)

Since the receive rate of the NimbusCC flow is 𝑅2 (𝑡), the cross traffic
estimate given by Eq. (1) is:

𝑧 (𝑡)=𝜇 · 𝑆 (𝑡)
𝑅2 (𝑡)

−𝑆 (𝑡)=𝜇 ·
𝑧∗1 (𝑡) ·𝑧

∗
2 (𝑡)

𝜇∗1 ·𝜇
∗
2
+𝑆 (𝑡) ·

(
𝜇 ·𝑧∗2 (𝑡)
𝜇∗1 ·𝜇

∗
2
+ 𝜇

𝜇∗2
−1

)
.

(10)

The cross traffic estimate is thus a combination of the real cross traffic
rate and the sending rate. Since the sending rate component oscillates
at the pulse frequency, Nimbus will detect oscillations at the pulsing
frequency in 𝑧 (𝑡) and classify cross traffic as elastic.

Experiment. We evaluate NimbusCC on a topology with multiple
bottleneck links. The topology consists of two links. Link 1’s
bandwidth is 192 Mbit/s and link 2’s bandwidth is 96 Mbit/s. The
experiment consists of a single NimbusCC flow going through the
two links. The propagation RTT is 50ms. Each link has either elastic
or inelastic cross traffic (a cross traffic flow only traverses one of the
two links). Depending on the instantaneous rate of the cross traffic at
each link, the bottleneck could either be both links or one of the links
(the bottleneck can change within an experiment). Table 4 shows the
throughput delta relative to status quo and the total queuing delay
across both links, averaged over 5 runs of each scenario. NimbusCC
achieves throughput comparable to the status quo (within 15%) in
all the cases. In scenarios where either of the links contained elastic
cross traffic NimbusCC stayed in the TCP-competitive mode majority
of the time (> 85%). When both links had inelastic cross traffic,
NimbusCC uses the delay-controlling mode and is able to reduce
delays; note that in this case the slower link (link 2) is the bottleneck.

Cross Traffic Cross Traffic Throughout Δ Q Delay
(Link 1) (Link 2)

Elastic Elastic -3% 146 ms
Inelastic Elastic 5% 76 ms
Elastic Inelastic -14% 91 ms

Inelastic Inelastic 0% 14 ms

Table 4: Performance on a topology with multiple bottlenecks.

𝜅 Time to elect a pulser Fraction of time with multiple pulsers

0.5 19.8 s 0%
0.75 15.3 s 4.6%

1 8.0 s 9.3%
1.5 5.4 s 15.4%
2 2.7 s 29.3%

Table 5: Impact of𝜅.

D.5 Impact of 𝜅

We evaluate the impact of 𝜅 on pulser election. In the experiment
eight NimbusCC flows start simultaneously, the bottleneck link is
96 Mbits/s and the base RTT is 50ms. We report the time it takes to
elect a pulser and the fraction of time there were multiple pulsers.
Table 5 summarizes the average values across 20 runs (45 s each).
As expected, increasing 𝜅 reduces the time to elect a pulser, but also
increases the chances of multiple pulsers being elected.
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