
Site-to-Site Internet Traffic Control

Frank Cangialosi∗ , Akshay Narayan∗ , Prateesh Goyal ,
Radhika Mittal , Mohammad Alizadeh , Hari Balakrishnan

MIT CSAIL UIUC

ABSTRACT
Queues allow network operators to control traffic: where
queues build, they can enforce scheduling and shaping poli-
cies. In the Internet today, however, there is a mismatch be-
tween where queues build and where control is most effec-
tively enforced; queues build at bottleneck links that are often
not under the control of the data sender. To resolve this mis-
match, we propose a new kind of middlebox, called Bundler.
Bundler uses a novel inner control loop between a sendbox
(in the sender’s site) and a receivebox (in the receiver’s site) to
determine the aggregate rate for the bundle, leaving the end-
to-end connections and their control loops intact. Enforcing
this sending rate ensures that bottleneck queues that would
have built up from the bundle’s packets nowshift from the bot-
tleneck to the sendbox. This enables the sendbox to exercise
control over its traffic by scheduling packets according to any
policy necessary to achieve the network operator’s higher-
level objectives. We have implemented Bundler in Linux and
evaluated it with real-world and emulation experiments. We
find that Bundler allows the sender-chosen policy to be ef-
fective: when configured to implement Stochastic Fairness
Queueing (SFQ), it improves median flow completion time
(FCT) by between 28% and 97% across various scenarios.

1 INTRODUCTION
This paper introduces the idea of site-to-site Internet traffic
control. By łsitež, we mean a single physical location with
tens to many thousands of endpoints sharing access links to
the rest of the Internet. Examples of sites include a company
office, a coworking office building, a university campus, a
single datacenter, and a point-of-presence (PoP) of a regional
Internet Service Provider (ISP).
Consider a company site with employees running thou-

sands of concurrent applications. The administratormaywish
to enforce certain traffic control policies for the company; for

∗Both authors contributed equally to this work.

Permission tomakedigitalorhardcopiesofpartorall of thiswork forpersonal

or classroom use is granted without fee provided that copies are not made or

distributed for profit or commercial advantage and that copies bear this notice

and the full citation on the first page. Copyrights for third-party components

of this workmust be honored. For all other uses, contact the owner/author(s).

EuroSys ’21, April 26ś28, 2021, Online, United Kingdom

© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8334-9/21/04.

https://doi.org/10.1145/3447786.3456260

example, ensuring rates and priorities for Zoom sessions, de-
prioritizing bulk backup traffic, prioritizing interactive web
sessions, and so on. There are two issues that stand in theway:
first, the bottleneck for these traffic flows may not be in the
company’s network, and second, the applications could all be
transitingdifferent bottlenecks. Sowhat is the company todo?
Cloud computing has made the second issue manageable.

Because the cloud has become the prevalentmethod to deploy
applications today, applications from different vendors often
run from a small number of cloud sites (e.g., Amazon, Azure,
etc.). Thismeans that the network path used by thesemultiple
applications serving the company’s users are likely to share a
common bottleneck; for example, all the applications running
from Amazon’s US-West datacenter, all the video sessions
from a given Zoom datacenter, and so on. In this setting, by
treating the traffic between the datacenter site and the com-
pany site as a single aggregate, the company’s network admin-
istrator may be able to achieve their traffic control objectives.
But what about the first issue? The bottleneck for all the

trafficbetweenAmazonUS-West and the companymaynot be
the site’s access link or at Amazon, but elsewhere, e.g., within
the company’s ISP; indeed, that may be the common case [12,
15, 30, 42]. Unfortunately, the company cannot control traffic
when the queues build inside its ISP. And the ISP can’t help
because it does not knowwhat the company’s objectives are.1

We propose a system, Bundler, that solves this problem.
Bundler enables flexible control of a traffic bundle between
a source site and a destination site by shifting the queues that
would otherwise have accumulated elsewhere to the source’s
site (Figure 2) . It then schedules packets from this shifted
queue using standard techniques [11, 14, 17, 18, 35, 38, 39, 44,
46, 48, 52] to reduce mean flow-completion times, ensure low
packet delays, isolate classes of traffic from each other, etc.

Thekey idea inBundler is a control loopbetween the source
and destination sites to calculate the dynamic rate for the
bundle. Rather than terminate end-to-end connections at the
sites,we leave them intact and develop an łinner loopž control
method between the two sites that computes this rate. The
inner control loop uses a delay-based congestion control algo-
rithm that ensures high throughput, but controls self-inflicted
queueingdelaysat theactual bottleneck.Byavoidingqueues at
the bottleneck, the source site can prioritize latency-sensitive
applications and allocate rates according to its objectives.

1Interdomain QoS mechanisms [7, 51] have not succeeded in the Internet

despite years of effort.

https://doi.org/10.1145/3447786.3456260

Carrier 2

Public Internet

Site B

(e.g., a company office network)

Site A

(e.g., AWS US-West datacenter)

Bundler

Carrier 1

Bottleneck Link

Bundler

send-boxreceive-box

send-box receive-box

A →B Bundle B →A Bundle

Figure 1:An example deployment scenario for Bundler in sitesA andB. Trafficbetween the twoboxes is aggregated into a single

bundle, shown as shaded boxes. The sendbox schedules the traffic within the bundle according to the policy the administrator

specifies (ğ4).

By not terminating the end-to-end connections at the sites,
Bundler achieves a key benefit: if the bottleneck congestion
is due to other traffic not from the bundle, end-to-end
algorithms naturally find their fair-share. It also simplifies
the implementation because Bundler does not have to proxy
TCP, QUIC, and other end-to-end protocols.

As shown in Figure 1, Bundler implements its source site
and destination site functions in a sendbox and receivebox,
respectively. The sendboxof one site pairswith the receivebox
of another site when sending traffic to it.2 These two middle-
boxes measure congestion signals such as the round-trip time
(RTT) and the rate at which packets are received, and pass
these signals to a congestion control algorithm at the sendbox
(ğ4) to dynamically compute the bundle’s sending rate. We
introduce a lightweight method for the coordination between
the sendbox and the receivebox that does not require any
per-flow state and can be deployed in a mode that forwards
packets without modification. Bundler requires no changes
to the end hosts or to network routers.
Our focus thus far has been to control traffic only within

a given bundle and not across different bundles. Furthermore,
as we will discuss in ğ3, there may be instances where
Bundler cannot improve performance for the bundled traffic,
and falls back to the status quo; i.e., the performance achieved
today when queues build in the network instead of the edge.
For example, when traffic between the two sites traverses
different paths with different levels of congestion, Bundler
will detect this and performance will revert to the status quo.

In emulated scenarios (ğ7), we demonstrate that Bundler
successfully enables scheduling benefits. In particular, when
configured to use Stochastic Fairness Queueing (SFQ),
Bundler reduces the median flow completion time (FCT) of
a representative flow size distribution between 28% to 97%
across a variety of scenarios. Furthermore, these performance
benefits are within 15% of what would be achievable if
(optimal) in-network scheduling were a possibility. In

2One sendbox can pair with multiple receiveboxes and vice versa.

experiments over the public Internet (ğ8), we find that
Bundler reduces short-flow latencies by 57%.

2 RELATEDWORK

Traditional congestion control. End hosts employ conges-
tion control algorithms that aim to achieve high throughput
and low delay while fairly sharing network resources with
other users [24]. Each connection runs such an algorithm
independently to learn about the network conditions and
find the best sending rate. In Bundler, a sendbox uses
such an algorithm to determine the aggregate’s sending
rate, rather than the rate of an individual connection. The
end-hosts continue to use unmodified end-to-end congestion
controllers for each connection.

Aggregating congestion information. There have been
multiple proposals to aggregate congestion control informa-
tion in different contexts: flows sharing the same endpoint [4],
flows between two racks within a datacenter [54], and flows
originating from a large cloud/content provider [43]. The
goal of these approaches is to share information among the
various end-to-end flows’ congestion controllers, which
allows them to better adapt to network conditions. Bundler
has a different goal: to control queueing (and thus enable
scheduling) from the edge of the network without interfering
with the end-to-end congestion controllers of individual
component flows. It is orthogonal to prior proposals on
aggregate congestion control.

Using a middlebox for queue management. Remote
Active Queue Management (AQM) [2] aims reduce VoIP
traffic latency by deploying a middlebox at a site’s access link
that drops packets or injects ECN marks for the remaining
flows in order to manipulate their end-to-end congestion
control loops. It makes a core assumption that the bottleneck
is the site’s access link. In contrast, Bundler tackles arbitrary
bottleneck locations in the middle of the network. Moreover,
unlike Remote AQM, Bundler is not restricted to a specific
queue management policy for a specific traffic class.

Overlay networks. Bundler’s motivation is closer to a pro-
posal in overlay networks, OverQoS [49], which aimed to pro-
vide QoS benefits in the Internet by enforcing traffic manage-
ment policies at the nodes of an already-deployed overlay net-
work [1]. Bundler’s approach is more lightweight; instead of
relyingonanoverlaynetwork, Bundler only requires each site
to deploy a middlebox, and uses a novel control loop between
the middleboxes to facilitate traffic management at the sites.

3 GOALS ANDASSUMPTIONS
Figure 1 describes Bundler’s deployment model. Bundler
aggregates traffic from Site A to Site B, and vice-versa, into
two unidirectional bundles. In the egress path, the sendbox
moves the in-network queues built by the bundled traffic
to itself (illustrated in Figure 2) (we describe the specific
mechanism in ğ4). It can thus enforce desired scheduling
policies across the traffic in the bundle.
Our primary goal with Bundler is to provide control over

self-inflicted queueing, i.e., when traffic from a single bundle
causes a queue to build up at the bottleneck links in the net-
work, even without any other cross-traffic. In the remainder
of this section, we detail the conditions in which Bundler can
achieve this goal. Our high-level strategy is łdo no harmž;
Bundler detects conditions in which it cannot operate and
temporarily disables itself until favorable conditions return,
reverting to status-quo performance in the meantime.

Non-edge bottleneck. Network administrators already
have control over packets which queue within their site.
Bundler is capable of taking control over queues that build up
anywhere between a sendbox-receivebox pair. Thus, deploy-
ing Bundler at the edge of each site captures any potential
build upoutside of either site’s control. Such congestionmight
occur at an inter-domain link, within either site’s ISP, or, if a
site ismanaged by a cloud provider, it could even occurwithin
its datacenter (e.g., at the cloud provider’s rate limiter, ğ8).

There is strong evidence that suchnon-edge bottlenecks ex-
ist. Dhamdhere et al.measured [15] inter-domain bottlenecks
such as the red bottleneck link in Figure 1. Similarly, Zhu et al.
found [53] that non-edge bottlenecks for transnational traffic
to and from China are prevalent, and moreover that in many
cases, the bottleneck for this traffic is an ISP deep inside China
rather than a larger provider. AnM-Lab technical report simi-
larly found [50]patternsofperformancedegradation linked to
specific ISP interconnections in the middle of the network. Fi-
nally, Jin et al. found [25] that forWANtrafficoriginating from
MicrosoftAzure, the łmiddlež, i.e., on-pathASes not including
the source or destination AS, is to blame for between 40-50%
of persistent congestion incidents over a one-month period.

External congestion.Other than self-inflicted congestion,
Bundler must coexist with traffic from external sources.

Congestion due to bundled cross-traffic. Bundler continues
to provide benefits when the competing flows are part of
other bundles from/to other sites because the rate control
algorithm at each of the other sendboxes would ensure that
the in-network queues remain small, and different bundles
compete fairlywith one another. Since each sendboxmanages
the self-inflicted queues for its own bundles, it can apply the
appropriate scheduling policy in its per-bundle queues.

Congestion due to un-bundled cross-traffic.We now consider
the scenariowhere thecross-traffic includesun-bundledflows.
If all such un-bundled competing flows are short-lived (up to
a fewMBs) or application-limited (e.g., a paced video stream),
the bundled traffic still sees significant performance benefits,
because there arenot enoughpackets in such short-livedflows
to fill up the queues or claim a greater share of network band-
width.However, if the cross traffic is long lasting, and employs
a loss-based congestion controller to send back-logged bulk
data, it aggressively fills up all available buffer space at the
bottleneck link. Naively using a delay-based congestion con-
troller at Bundler against such aggressive buffer-filling cross-
traffic would severely degrade the throughput of the bundled
traffic. Therefore, Bundler’s congestion controller detects the
presence of buffer-filling cross-traffic; to compete fairly, it
relinquishes most of its control (and scheduling opportuni-
ties) over the bundled traffic, while still maintaining a small
queue for continueddetectionof cross-traffic (detailed in ğ5.1).
However, such pathological buffer-filling cross traffic is rare.
A recent study in CDNs [5] and our analysis of a packet trace
from an Internet backbone router [9] reveal that the vast ma-
jority of connections are smaller than 1MB: too small to build
persistent queues.3 Our experiments on Internet paths (ğ8),
also did not encounter pathological buffer-filling cross traffic.

Shared congestion across flows in the bundle. Bundler’s
design for moving queues via aggregate congestion control
assumes that the component flows within a bundle share in-
network paths, and thus congestion. To test this assumption,
we used Scamper [31] to probe all paths to 5000 random IPv4
addresses from each of 30 cloud instances across the regions
of public cloud providers AWS and Azure. In no cases did we
find that probe packets took different AS-level paths through
the network. However, we observed instances of IP-level load
balancing in 26% of IP hops. In pathological scenarios with
persistent imbalance in queueing between the load-balanced
paths, Bundler cannot gather accurate measurements and
perform aggregated delay-based rate control for the bundled
traffic.Designing anewcongestion control algorithm for such
scenarios remains an avenue for future work. Nonetheless,
Bundler can detect these scenarios (ğ5.2) and disable its rate

3This implies that flows within a bundle may also be short-lived requests

or paced audio/video traffic which, when aggregated by Bundler, can form

a heavy, long-lasting bundle.

Internet

Edge Router Bottleneck

… …

Internet

Send-Box Bottleneck

… …

(a) Status Quo (b) With Bundler
Figure 2: This illustrative example with a single flow shows how Bundler can take control of queues in the network. The plots,

from measurements on an emulated path (as in ğ7), show the trend in queueing delays at each queue over time. The queue

where delays build up is best for scheduling decisions, since it has themost choice between packets to send next. Therefore, the

sendbox shifts the queues to itself.

control in such cases, falling back to status-quo performance.
We expect a well-implemented load balancer will work
to prevent persistent imbalance from occurring; indeed,
our success with using Bundler on real Internet paths (ğ8)
suggests that such pathological cases do not occur in practice.

Intuition for Bundler’s applicability. Another way of
understanding when Bundler is useful, which incorporates
the three conditions above, is the following litmus test:
compare the queueing delay when all flows (Bundler’s and
cross-traffic) are in the network with the queueing delay
when the Bundler ’s flows are magically removed; if the latter
is lower than the former, then Bundler can provide benefits.

4 DESIGNINGBUNDLER
Recall that in order to do scheduling, we need to move the
queues from the network to the Bundler. In this section, we
first describe our key insight for moving the in-network
queues, and then explain our specific design choices. Recall
that each site deploys one Bundler middlebox which we log-
ically partition into sender-side (sendbox) and receiver-side
(receivebox) functionality.

4.1 Key Insight
We induce queuing at the sendbox by rate limiting the
outgoing traffic. If this rate limit is made smaller than the
bundle’s fair share of bandwidth at the bottleneck link in
the network, it will decrease throughput. Conversely, if
the rate is too high, packets will pass through the sendbox
without queueing. Instead, the rate needs to be set such
that the bottleneck link sees a small queue while remaining
fully utilized (and the bundled traffic competes fairly in the
presence of cross traffic). We make a simple, but powerful,
observation: existing congestion control algorithms calculate
exactly this rate [24]. Therefore, running such an algorithm
to set a bundle’s rate would reduce its self-inflicted queue
at the bottleneck, causing packets to queue at the sendbox
instead, without reducing the bundle’s throughput. Note that
end hosts would continue running a traditional congestion
control algorithm as before (e.g., Cubic [22], BBR [10]) which

Measurement

Datapath

Cross-Traffic

Detec4on

Conges4on ACKs

Delay Control
Sendbox

Receivebox

Shared
Conges4on Control

Figure 3: Bundler comprises of six sub-systems: four (in

green) implement sendbox functionality, one (in blue)

implements receivebox functionality, and the datapath

(orange) is shared between the two.

is unaware of Bundler. Rather, the sendbox’s congestion
control algorithm acts on the traffic bundle as a single unit.

Figure 2 illustrates this concept for a single flow traversing
a bottleneck link in the network.4 Without Bundler, packets
from the end hosts are queued in the network, while the
queue at the edge is unoccupied. In contrast, a Bundler
deployed at the edge is able to shift the queue to its sendbox.

4.2 SystemOverview
Figure 3 shows Bundler’s sub-systems: (1) A congestion
control module at the sendbox which implements the rate
control logic and cross-traffic detection, as discussed in ğ4.3.
(2) A mechanism for sending congestion feedback (ACKs) in
the receivebox, and (3) a measurementmodule in the sendbox
that computes congestion signals (RTT and receive rate) from
the received feedback. We discuss options for implementing
congestion feedback mechanism in ğ4.4 and how to use that
feedback in the measurement module in ğ4.5. (4) A datapath
for packet processing (which includes rate enforcement and
packet scheduling). Any modern middlebox datapath, e.g.,
BESS [23], P4 [6], or Linux qdiscs (as used in our prototype
implementationÐsee ğ6), is suitable.We detail the interaction
between these subsystems when discussing our prototype
implementation in ğ6. In the rest of this section, we discuss
our key design choices.

4Details of the emulated network setup which resulted in the illustrated

queue length time-series are in ğ7.

4.3 Choice of congestion control algorithm
Bundler’s congestion control algorithm must satisfy the
following requirements:
(1) Ability to limit network queueing. Bundler must limit
queueing in the network to move the queues to the sendbox.
Therefore, congestion control algorithms which are designed
to control delays, and thus queueing, are the appropriate
choice. A loss-based congestion control algorithm which
fills buffers (e.g., Cubic, NewReno), for example, is not a good
choice for Bundler, since it would build up a queue at the
network bottleneck and drain queues at the sendbox.
(2) Detection of buffer-filling cross-traffic. It is well known
that delay-controlling schemes (e.g., Vegas [8]) compete
poorly with buffer-filling loss-based schemes [3]. Therefore,
Bundler must have a mechanism to detect the presence of
such competing buffer-filling flows and fall back to status
quo performance, and then detect when they have left to take
back its control over the network queues.
The emergence of such detection mechanisms is recent:

Copa [3] detects whether it is able to empty the queues, and
Nimbus [21] provides a more general mechanism which
overlays a pattern on the sending rate and measures the
cross traffic’s response. Copa is not designed for aggregate
congestion control (see ğ5); thus, we use the more general
Nimbus mechanism.

4.4 Congestion FeedbackMechanism
A congestion control algorithm at the sendbox would require
network feedback from the receivers to measure congestion
and adjust the sending rates accordingly. We discuss multiple
options for obtaining this.

Passively observe in-band TCP acknowledgements.

Conventional endhost-based implementations haveusedTCP
acknowledgements to gather congestion control measure-
ments. A simple strategy for Bundler is to passively observe
the receiver generated TCP acknowledgements at the send-
box. However, we discard this option as it is specific to TCP
and thus incompatible with alternate protocols, i.e., UDP for
video streaming or QUIC’s encrypted transport header [29].

Terminate connections and proxy through TCP. With
this approach, one would terminate end-host TCP con-
nections at the sendbox and open new connections to the
receivebox, allowing the sendbox to control the rate of
traffic in these connections. This approach can improve
performance by allowing end-to-end connections to ramp
up their sending rates quickly. The primary disadvantage
of this approach is that Bundler must take responsibility for
reliable delivery of component traffic, which requires large
amounts of queueing and, in the case of UDP applications,
can harm application performance. Furthermore, proxying
TCP connections introduces a new potential point of failure

Recv
Epoch

sendbox receivebox

now

Send
Epoch

RTT

Traffic

Feedback

p
i−1

p
i

tsent(pi−1)

tsent(pi)
trecv(pi−1)

trecv(pi)

Figure 4: Example of epoch-based measurement calculation.

Time moves from top to bottom. The sendbox records

the packets that are identified as epoch boundaries. The

receivebox, up on identifying such packets, sends a feedback

message back to the sendbox, which allows it to calculate the

RTT and epochs.

at Bundler that violates fate-sharing; if Bundler crashes,
connections will be lost. Finally, from a practical standpoint,
to avoid head-of-line blocking this approach requires that
Bundler open a new proxy connection for each component
end-host connection, but still determine the bottleneck rate of
the traffic aggregate. While this approach may be technically
feasible [4], it would result in high overhead. Thus, we set
aside TCP proxies for the remainder of this discussion, but
explore their compatibility with Bundler in ğ7.5.

Out-of-band feedback.Having eliminated the options for
using in-band feedback, we adopt an out-of-band feedback
mechanism: the receivebox sends out-of-band congestion
ACKs to the sendbox. This decouples congestion signalling
from traditional ACKs used for reliability and is thus indif-
ferent to the underlying protocol (be it TCP, UDP, or QUIC).

4.5 Measuring Congestion
Sending an out-of-band feedback message for every packet
arriving at the receivebox would result in high communi-
cation overhead. Furthermore, conducting measurements
on every outgoing packet at the sendbox would require
maintaining state for each of them, which can be expensive,
especially at high bandwidth-delay products. This overhead
is unnecessary; reacting once per RTT is sufficient for
congestion control algorithms [36]. The sendbox therefore
samples a subset of the packets for which the receivebox
sends congestion ACKs. We refer to the period between two
successively sampled packets as an epoch, and each sampled
packet as an epoch boundary packet.
The simplest way to sample an epoch boundary packet

would be for the sendbox to probabilistically modify a
packet (i.e., set a flag bit in the packet header) and the
receivebox to match on this flag bit. However, where in
the header should this flag bit be? Evolving packet headers
has proved impractical [34], so perhaps we could use

Underestimate (10%) Overestimate (10%)

10% 50% 90%

0
12
24
36
48
60
72
84
96

108

0.0

0.2

0.4

0.6

20 21 22 23 24 25

−10 −8 −6 −4 −2 0 2 4 6 8 10

Time (seconds)

Difference Between Estimated and Actual Receive Rate (Mbps)

R
e
c
e
iv

e
 R

a
te

 (
M

b
p
s
)

P
D

F

Actual Estimated

Figure 5: Bundler’s estimate of the receive rate.

an encapsulation mechanism. Protocols at both L3 (e.g.,
NVGRE [20], IP-in-IP [41]) and L4 (e.g., VXLAN [32]) are
broadly available and deployed in commodity routers today.
Happily, we observe that such packet modification is not

inherently necessary; since the same packets pass through
the sendbox and receivebox, uniquely identifying a given
pattern of packets is sufficient to meet our requirements. In
this scheme, the sendbox and receivebox both hash a subset
of the header for every packet, and consider a packet as
an epoch boundary if its hash is a multiple of the desired
sampling period.

Upon identifying a packet pi as an epoch boundary packet
the sendbox records: (i) its hash, h(pi), (ii) the time when it
is sent out, tsent(pi), and (iii) the total number of bytes sent
thus far including this packet,bsent (pi). When the receivebox
sees pi , it also identifies it as an epoch boundary and sends
a congestion ACK back to the sendbox. The congestion ACK
containsh(pi) and the running count of the total number of
bytes received for that bundle. Upon receiving the congestion
ACK forpi , the sendbox records the received information, and
using its previously recorded state, computes the RTT and the
rates at which packets are sent and received, as in Figure 4.

Epoch boundary identification. The packet header subset
that is used for identifying epoch boundaries must have
the following properties: (i) It must be the same at both
the sendbox and the receivebox. (ii) Its values must remain
unchanged as a packet traverses the network from the
sendbox to the receivebox (so, for example, the TTLfieldmust
be excluded).5 (iii) It differentiates individual packets (and not
just flows), to allow sufficient entropy in the computed hash

5Certain fields, that are otherwise unchanged within the network, can be

changed by NATs deployed within a site. Ensuring that the Bundler boxes

sit outside the NATwould allow them to make use of those fields.

Underestimate (10%) Overestimate (10%)

10% 50% 90%

0
12
24
36
48
60
72
84

0.0

0.2

0.4

0.6

0.8

20 21 22 23 24 25 26 27 28 29 30

−5 −4 −3 −2 −1 0 1 2 3 4 5

Time (seconds)

Difference Between Estimated And Actual RTT (ms)

R
T

T
 (

m
s
)

P
D

F

Estimated Actual

Figure 6: Bundler’s estimate of the delay

values. (iv) It also differentiates a retransmitted packet from
the original one, to prevent spurious samples from disrupting
themeasurements (this precludes, for example, the use of TCP
sequencenumber).Weexpect that theprecise set offieldsused
will depend on specific deployment considerations. For ex-
ample, in our prototype implementation (ğ6) we use a header
subset of the IPv4 IP ID field and destination IP and port. We
make this choice for simplicity; it does not require tunnelling
mechanisms and is thus easily deployable, and if Bundler
fails, connections are unaffected. We note that previous pro-
posals [45] have used IP ID for unique packet identification.
The drawback of this approach is that it cannot be extended
to IPv6. To support a wider set of scenarios, Bundler could
use dedicated fields in an encapsulating header (as in [33]).

To visualize how these measurements impact the behavior
of the signals over time we pick an experiment for which the
median difference matches that of the entire distribution and
plot a five second segment of our estimates compared to the
actual values in Figure 5.

Choosing the epoch size. In order to balance reaction
speed and overhead, epoch packets should be spaced such
that measurements are collected approximately once per
RTT [36]. Therefore, for each bundle, we track the minimum
observed RTT (minRTT) at the sendbox and set the epoch
size N = (0.25×minRTT ×send_rate), where the send_rate
is computed as described above. The measurements passed
to the congestion control algorithms at the sendbox are then
computed over a sliding window of epochs that corresponds
to one RTT. Averaging over a window of multiple epochs
also increases resilience to possible re-ordering of packets
between the sendbox and the receivebox, which can result in
them seeing different number of packets between two epochs.

When the sendbox updates the epoch size N for a bundle,
it needs to send an out-of-band message to the receivebox
communicating the new value. To keep our measurement
technique resilient to potential delay and loss of this message,
the epoch size N is always rounded down to the nearest
power of two. Doing this ensures that the epoch boundary
packets sampled by the receivebox are either a strict superset
or a strict subset of those sampled by the sendbox. The
sendbox simply ignores the additional feedback messages
in former case, and the recorded epoch boundaries for which
no feedback has arrived in the latter.

Robust to packet loss. Note that our congestion measure-
ment technique is robust to a boundary packet being lost
between the sendbox and the receivebox. In this case, the send-
box would not get feedback for the lost boundary packet, and
it would simply compute rates for the next boundary packet
over a longer epoch once the next congestion ACK arrives.

Microbenchmarks. To evaluate the accuracy and robust-
ness of thismeasurement technique, we picked 90 traces from
our evaluation covering a range of link delays (20ms, 50ms,
100ms) and bottleneck rates (24Mbps, 48Mbps, 96Mbps),
and computed the difference, at each time step, between
Bundler’s measurements (estimate) and the corresponding
values measured at the bottleneck router (actual). In Figure 6
we focus on the RTTmeasurements: the bottom plot shows
the distribution of the differences, and the top plot puts
it into context by showing a five second segment from a
trace where the median difference matched that of the full
distribution. In Figure 5, we produce the same plots for the
receive rate estimates. In summary, 80% of our RTT estimates
were within 1.2ms of the actual value, and 80% of our receive
rate estimates were within 4Mbps of the actual value.

4.6 Implications of Bundler’s Design
Our design choices result in an architecture where Bundler’s
inner rate control loop can be implemented entirely the
łcontrol planež of the sendbox and the receivebox, which
passively observes the packets traversing the datapath of the
middleboxes, without modifying them. This results in a truly
transparent system, that is light-weight, has low overhead,
preserves fate-sharing, and in no way interferes with the
end-to-end controllers of individual flows. The only datapath
action that Bundler performs is the enforcement of the desired
scheduling and queue management policies at the sendbox.

5 UNFAVORABLE CONDITIONS
Recall from ğ3 that Bundler can reliably shift queue build
up from the bottleneck to itself when, (a) the cross-traffic is
not buffer-filling, and (b) all of its component traffic shares
the same bottleneck in the network. In practice, either of
these conditions may break. In this section, we describe how

Bundler can re-use the samemeasurements from ğ4.5 to de-
tect when these conditions do not hold. In such cases, Bundler
(temporarily) disables its rate limiting (falling back to status-
quo performance) until favorable conditions arise again.

5.1 Buffer-Filling Cross Traffic
It is well known that delay-based congestion control algo-
rithms (as Bundler uses) lose throughput when competing
with buffer-filling algorithms [3, 21]. To prevent this, Bundler
utilizes priorwork,Nimbus [21],whichprovides amechanism
for detecting the presence of buffer-filling6 cross traffic, and
proposes temporarily switching to a buffer-filling scheme
to compete fairly whenever such cross traffic is present. At a
high-level, the detection mechanismworks as follows: given
a desired sending rate r (t) (from an underlying congestion
control algorithm), Nimbus superimposes an asymmetric
sinusoid onto r (t) to determine the sending rate. Then, it
monitors the measured send and receive rate, estimates the
cross-traffic’s rate, and monitors the cross traffic’s rate in the
frequency domain. The sinusoidal variations in the sending
rate will be visible in the cross-traffic’s rate only if buffer-
filling cross traffic is sharing the same bottleneck queue.
What exactly should the sendbox do when it detects

buffer-filling traffic? Using a buffer-filling scheme for the
bundle as in Nimbus would be fraught: since a bundle is
comprised of many individual flows, the sendbox would
need to know the number of flows in the bundle to know
how aggressively it should compete in order to receive its
fair share (as in the status quo) [13]. This number may vary
significantly over time and would be difficult to measure,
especially on high-performance datapaths [47].
Instead, we propose a simpler solution. Since each con-

nection in a bundle is already employing its own congestion
controller, Bundler can simply let the traffic pass, i.e., increase
the pacing rate at the sendbox to stop controlling queues.
Then, the end-host congestion control loops will naturally
compete fairly with the buffer-filling cross traffic, just as they
would without Bundler.

However, letting the traffic pass creates a new challenge.
To determine when it is safe to resume delay-control while
in the traffic-passing mode, Nimbus requires a superimposed
pulse in both modes. If we naively let the traffic pass, the
sendbox queuewould never build. As a result, therewould not
be sufficient packets in the queue to perform the rate increase
for the up-pulse. Without the up-pulse, once the sendbox
switched to the buffer-filling mode, it would not be able to

6In particular, Nimbus detects łelasticž cross-traffic [21], a superset of

buffer-filling traffic. [21] provides an explanation of this distinction and

a detailed evaluation of Nimbus’ accuracy of detecting elastic cross traffic

and speed of switching between the two modes, using both emulated

and real-world experiments. Bundler’s use of Nimbus does not impact its

accuracy or speed of switching.

gather sufficient information to switch back to delay-control
mode once the buffer-filling cross traffic subsided.
To support the Nimbus pulses while also letting the traf-

fic pass, the sendbox must maintain sufficient queueing
for the up-pulse, i.e., the area under the up-pulse curve:

A
∫ T

4

0
sin(4π t

T
)dt = AT

2π
. FromNimbus, we useT =0.2 seconds

andA=one-fourth thebottleneckbandwidth (µ),whichyields
T µ

8π
, or 8ms·µ of queueing. We thus configure the sendbox to

maintain a target queue qT of 10ms (the additional 2ms is a
cushionagainst inputvariance).Becausebundledconnections
will experience this queueing in addition to other queueing in
the network, most traditional congestion control algorithms
(e.g., Cubic) will observe RTT inflation. In ğ7.3 we show that
this effect is not large; Bundler still achieves performance
comparable to the status quo. Nevertheless, it is desirable
minimize this inflation and be as close to qT as possible.

Thus, to achieve the target queue qT we use a PI controller
at the sendbox which determines how the base sending rate
r (t) should be updated: Ûr (t) = α(q(t) −qT)+ β(Ûq(t)), where
Ûr (t) is the update to r (t) before imposing the Nimbus pulse,
q(t) is the current queue size at the sendbox, and α and β are
both positive. If q(t)>qT , the first term will be positive and
the rate will increase, causing the queue to shrink. Similarly,
if the queue size is growing, the second termwill be positive,
which means the rate will increase and the queue will shrink.
Setting α and β controls a tradeoff: with larger values the
controller will approach the target faster, but if they are too
large the controller’s variations will dominate the Nimbus
pulse. If they are too small, it will take too long to reach the
target. We found that α = 10 and β = 10 work well for the
scenarios in our evaluation (ğ7 and ğ8).

5.2 ImbalancedMultipathing
Since a bundle contains many component connections, a
load balancer may send them along different paths. If the load
along different paths iswell-balanced, Bundlerwill accurately
treat a load-balanced bottleneck link as a single link whose
rate is the sum of the rates of each sub-link. However, when
the load along different paths is imbalanced, the series of
measurements Bundler collects will be a random sampling
of the different paths, which would confuse the delay-control
algorithm and cause it to perform poorly. Fortunately, such
cases are straight-forward to detect with our measurement
technique. More specifically, load imbalance will result in
many epoch measure packets arriving out-of-order at the
receivebox (whenever epoch packet i happens to traverse
a path with a larger delay than epoch packet i + 1), and
consequently, out-of-order łcongestionACKsž at the sendbox.
Figure 7 demonstrates this in an emulated imbalance scenario.
Therefore, we use the fraction of epoch measurement

packets that arrive out-of-order as an indicator of load
imbalance due to multipathing. If this number is small, the

0

200

400

600

0

200

400

600

0 10 20 30 40 50 60
Time (seconds)

P
e

r−
Q

u
e

u
e

 D
e

la
y

a
t

b
o

tt
le

n
e

c
k
 (

m
s
)

O
b

s
e

rv
e

d
 R

T
T

a
t

b
u

n
d

le
r

(m
s
)

Path 1 2 3 4

In−Order Out−Of−Order

Figure 7: (Top) True delay for all packets of Bundler’s com-

ponent flows based on which of 4 load-balanced paths they

traversed (unknown to Bundler). (Bottom) Delay measure-

ments observed by Bundler, colored based on whether they

were derived from an in-order or out-of-order epoch packet.

Bundler’s measurements cannot distinguish how many

paths there are, but the relative number of out-of-order

measurements is enough to clearly indicate the presence of

multiple RTT-imbalanced paths.

links are roughly balanced and Bundler will operate as
expected. If it is large, it indicates load imbalance, in which
case Bundler’s rate control may not work well. In ğ7.6, we
experimentally determine an out-of-order fraction of 5% to
be a good threshold indicating whether or not the links are
balanced: all single-path scenarios resulted in an order of
magnitude fewer out-of-order packets, and all multi-path
scenarios resulted in an order of magnitude greater.

6 IMPLEMENTATION
Bundler boxes can be implemented as described below
(although the specific implementations could vary across
deployments).

Sendbox. It comprises of a data plane and a control plane.
The data plane is responsible for (i) packet forwarding, (ii)
tracking the number of sent bytes, (iii) identifying and re-
porting the epoch boundary packets to the control plane, (iv)
enforcing a sending rate (computed by the control plane) on a
bundle, and (iv) enforcing the desired scheduling policies for
a bundle. It can implemented in software [23, 26, 28, 40], or in
programmable hardware [6]. The control plane, implemented
in software, is responsible for (i)measuring congestion signals
using the information provided by the data plane along
with the feedback from the receivebox, (ii) computing and
communicating epoch sizes, and (iii) running the congestion
control algorithm for each bundle to compute appropriate
sending rates based on the measured congestion signals.

qdisc

Kernel

User-space

Measure-

ment

Cong. Ctl.

(CCP)

Kernel

User-space

libpcap

Conges<on

ACKsConges<on ACKs

epoch

1

32

45
6

7

Epoch Size Control8

Datapath

S
e

n
d

b
o

x

R
e

ce
iv

e
b

o
x

Figure 8: Bundler Implementation Overview. Box colors correspond to the roles described in Figure 3. Shaded packets are

those that meet the epoch boundary condition. Dashed arrows represent communication via IPC, while solid arrows represent

communication over the network.

Receivebox. It (i) tracks the number of received bytes, (ii)
receives and updates epoch size values, (iii) identifies epoch
boundary packets and sends feedbackmessage to the sendbox
up on receiving one. Similar to sendbox’s data plane, it can
also be implemented using either software or hardware.

6.1 Prototype
We now describe our prototype implementation of Bundler.

Sendbox data plane.We implement it using Linux tc [28].
We patch the TBF queueing discipline (qdisc) [27] to
detect epoch boundary packets and to report them to the
control plane using a netlink socket. We use the FNV hash
function [19], a non-cryptographic fast hash function with
a low collision rate, to compute the packet header hash for
identifying epoch boundaries. This hash function, comprising
4 integer multiplications, is the only additional per-packet
work the data plane must perform to support Bundler; in our
experiments, it had negligible CPU overhead.
We patch TBF’s inner_qdisc to support any qdisc-based

traffic controller. By default, TBF instantaneously re-fills
the token bucket when the rate is updated; we disable this
feature to avoid rate fluctuations caused by our frequent rate
updates. Our patch to the TBF qdisc comprises 112 lines of C.

Sendbox control plane. We implement it to run in user-
space in 1365 lines of Rust. We use CCP [36] to run different
congestion control algorithms (described next). CCP is a
platform for expressing congestion control algorithms in an
asynchronous format, whichmakes it a natural choice for our
epoch-based measurement architecture. The control plane
uses libccp [36] to interface with the congestion control
algorithm, and libnl to communicate with the qdisc.

Congestion control algorithms. We use existing im-
plementations of congestion control algorithms (namely,
Nimbus [21], Copa [3] and BBR [10]) on CCP to compute
sending rates at the sendbox. If the algorithm uses a
congestion window, the sendbox computes an effective
rate of CWND

RTT and sets it at the qdisc. We validated that our

implementation of these congestion control schemes at the
sendbox closely follows their implementation at an endhost.

6.2 Bundler Event Loop
Figure 8 provides an overview of how our Bundler
implementation operates on an already-established bundle.

(1) In the datapath, packets arrive at the sendbox qdisc. (2)
The qdisc determines whether a packet matches the epoch
boundary condition (ğ4.5). If so, it sends a netlink message
to the control plane process running in user-space, and then
forwards the packet normally (note the datapath does not
send packets to user-space). (3) The receivebox observes
the same epoch boundary packet via libpcap. (4) It sends
an out-of-band UDP message to the sendbox that contains
the hash of the packet and its current state. (5) The sendbox
receives the UDPmessage, and uses it to calculate the epochs
and measurements as described in ğ4.5. (6) Asynchronously,
the sendbox control plane invokes the congestion control
algorithm every 10ms [36] via libccp, (7) The sendbox
control plane communicates the rate, if updated, to the qdisc
using libnl. Finally (8), if the sendbox changes the desired
epoch length based on newmeasurements, it communicates
this to the receivebox, also out-of-band.

7 EVALUATION
Given Bundler’s ability to move the in-network queues to
the sendbox (as shown earlier in Figure 2), we now explore:

(1) Where do Bundler’s performance benefits come from?
We discuss this in the context of improving the flow com-
pletion times (FCTs) of Bundler’s component flows. (ğ7.2)

(2) Do Bundler’s performance benefits hold across different
scenarios? (ğ7.3)

(3) Can Bundler work with different congestion control
algorithms (ğ7.4)?

(4) Are Bundler’s core ideas still applicable with other design
decisions? (ğ7.5)

(5) Is Bundler’s heuristic (ğ5.2) for detecting imbalanced
multipath scenarios robust? (ğ7.6)

(6) Can Bundler effectively control the queues on real
Internet paths? (ğ8)

7.1 Experimental Setup
We use network emulation via mahimahi [37] to evaluate our
implementation of Bundler in a controlled setting; we present
results on real Internet paths in ğ8. There are three 8-core
Ubuntu 18.04 machines in our emulated setup: (1) runs a
sender, (2) runs a sendbox, and (3) runs both a receivebox anda
receiver.Wedisable bothTCP segmentation offload (TSO) and
generic receive offload (GRO) as theywould change thepacket
headers in between the sendbox and receivebox, whichwould
cause inconsistent epoch boundary identification between
the two boxes. Nevertheless, throughout our experiments
CPU utilization on the machines remained below 10%.
Unless otherwise specified, we emulate the following sce-

nario. A many-threaded client generates requests from a re-
quest size CDF drawn from an Internet core router [9] and
assigns them to one of 200 server processes. The workload
is heavy-tailed: 97.6% of requests are 10KB or shorter, and
the largest 0.002% of requests are between 5MB and 100MB.
Each server then sends the requested amount of data to the
client and we measure the FCT of each such request. The link
bandwidth at themahimahi link is set to 96Mbps, and the RTT
is set to 50ms. The requests result in an offered load of 84Mbps.
The endhost runs Cubic [22], and the sendbox runs

Copa [3] (we test other schemes in ğ7.4) with Nimbus [21]
for cross traffic detection. The sendbox schedules traffic
using the Linux kernel implementation of Stochastic Fairness
Queueing (SFQ) [35], though we briefly evaluate other
policies in ğ7.2. Each experiment is comprised of 1,000,000
requests sampled from this distribution, across 10 runs each
with a different random seed.

7.2 Understanding Performance Benefits
We first present results for a simplified scenario without any
cross-traffic, i.e., all traffic traversing through the network is
generated by the same customer and is, therefore, part of the
same bundle. This scenario highlights the benefits of using
Bundler when the congestion on the bottleneck link in the
network is self-inflicted. We explore the effects of congestion
due to other cross-traffic in ğ7.3.

Using Bundler for fair queueing. In this section, we
evaluate the benefits provided by doing fair queuing at the
Bundler, and use median slowdown as our metric, where
the łslowdownž of a request is its completion time divided
by what its completion time would have been in an unloaded
network. A slowdown of 1 is optimal, and lower numbers
represent better performance.
We evaluate three configurations: (i) The łStatus Quož

configuration represents the status quo: the sendbox simply
forwards packets as it receives them, and the mahimahi

Figure 9: Bundler achieves 28% lower median slowdown.

The three graphs show FCT distributions for the indicated

request sizes: smaller than 10KB, between 10KB and 1MB,

and greater than 1MB. Note the different y-axis scales

for each group of request sizes. Whiskers show 1.25× the

inter-quartile range. For both Bundler and In-Network,

performance benefits come from preventing short flows

from queueing behind long ones. Thus, Bundler’s aggregate

congestion control by itself is not enough; if we configure

Bundler to use FIFO scheduling, the FCTs worsen compared

to the status quo.

bottleneck uses FIFO scheduling. (ii) The łIn-Networkž
configuration deploys fair queueing at the mahimahi
bottleneck.7 Recall from ğ1 that this configuration is not
deployable. (iii) The default Bundler configuration, that
uses stochastic fair queueing [35] scheduling policy at
the sendbox, and (iv) Using Bundler with FIFO (without
exploiting scheduling opportunity).
Figure 9 presents our results. The median slowdown

(across all flow sizes) decreases from 1.76 for Baseline to 1.26
with Bundler, 28% lower. In-Network’s median slowdown
is a further 15% lower then Bundler: 1.07. Meanwhile, in the
tail, Bundler’s 99%ile slowdown is 41.38, which is 48% lower
than the Status Quo’s 79.37. In-Network’s 99%ile slowdown
is 27.49.

Using Bundler for other policies.We additionally evalu-
ated other scheduling and queue management policies with
Bundler. We omit detailed results for brevity, and present a
few highlights.With FQ-CoDel [16], Bundler can achieve 97%
lower median end-to-end RTTs and 89% lower 99%ile RTTs.
By strictly prioritizing one traffic class over another, Bundler
results in 65% lowermedian FCTs for the higher-priority class.

Aggregate congestion control is not enough. It is
important to note that Bundler’s congestion control by itself
(i.e., running FIFO scheduling) is not a means of achieving
improved performance. To see why this is the case, recall
that Bundler does not modify the endhosts: they continue to
run the default Cubic congestion controller, which will probe
for bandwidth until it observes loss. Indeed, the packets
endhost Cubic sends beyond those that the link can transmit

7 We implement this scheme by modifying mahimahi (our patch comprises

171 lines of C++) to add a packet-level fair-queueing scheduler to the

bottleneck link.

B
u

n
d

le
r

S
ta

tu
s

Q
u

o

0 20 40 60 80 100 120 140 160 180

0

50

100

150

0

50

100

150
0

50

100

150

0

50

100

150

Time (seconds)

T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

D
e

la
y

 (m
s

)

Bundler Throughput Cross−Traffic Throughput In−Network Queueing Delay

No Cross Traffic Buffer−Filling Cross Traffc Non−Buffer−Filling Cross Traffic

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

Slowdown

Figure 10: Bundler’s scheduling ability depends on the characteristics of the cross traffic over time. In this experiment, there

are 3 periods: from 0 to 60 sec., there is no competing traffic, from 60 to 120 sec. there is buffer-filling cross traffic, and from

120 to 180 sec. there is non-buffer-filling cross traffic. The box-plots below each period show the distribution of short flow

FCTs during that time. During the period with buffer-filling cross traffic, Bundler detects its presence and competes fairly. The

shaded region indicates time Bundler spent in buffer-filling cross-trafficmode (ğ5.1).

must queue somewhere in the network or get dropped.
Without Bundler, they queue at the bottleneck link; with
Bundler, they instead queue at the sendbox. In addition, the
delay-based congestion controller at sendbox also maintains
a small standing queue at the bottleneck link (which can be
seen in Figure 2) to avoid under-utilization, which increases
the end-to-end-delays slightly. Therefore, doing the FIFO
scheduling at the Bundler, as is done by the Status Quo,
results in slightly worse performance.

7.3 Impact of Cross Traffic
Can Bundler successfully revert to status-quo performance
in the presence of buffer-filling cross traffic, then resume
providing benefits once that cross traffic leaves? In Figure 10,
we show this scenario. At first, the link is occupied only by
Bundler’s traffic, similar to the setup described in ğ7.1. At time
t = 60 sec, a buffer-filling cross traffic flow arrives. Bundler
detects its presence (indicated by the gray shading) and starts
pushing more packets into the network to compete fairly, re-
verting back to performance that is slightly worse than Status
Quo (median FCT for short flows is 12% higher). Performance
is slightly worse because of the 10ms queue that Bundler
continues to maintain at its sendbox for active probing to de-
tect the cross-traffic’s departure, as described in ğ5. 8 At time
t =120sec, the buffer-filling flow stops and non-buffer-filling
traffic starts, generated from the same distribution as Bundler
as described in ğ7.1. Bundler correctly detects that it is safe
to resume delay-control, and continues providing scheduling
benefits. For the remainder of this subsection, we present
three micro-benchmarks which dig deeper into the latter

8We believe the benefits provided by Bundler in the more common regime

with no competing buffer-filling cross traffic are substantial enough to make

up for slight degradation in these specific scenarios.

Figure 11: Against cross traffic comprising of short lived

flows. Bundler offers 48Mbps of load to the bottleneckqueue.

The cross traffic’s offered load increases along the x-axis,

while Bundler’s offered load remains fixed.

two scenarios, where cross traffic can affect Bundler’s perfor-
mance. We present results with both Nimbus and Copa being
used as the congestion control algorithm at the sendbox.

Mix of flow sizes. We first consider in Figure 11 the case
Bundler traffic is most likely to encounter, where the cross
traffic comprises of finite-length flows up to a fewMBs.We
draw both Bundler’s traffic and the cross traffic from the
same measured distribution of web requests described in
ğ7.1. We fix Bundler’s offered load at a constant 48 Mbit/s
and vary the cross traffic’s offered load from 6 to 42Mbit/s.
While flows are often short, they sometimes exit slow

start. With sufficient offered load, they can cause queueing
in the aggregate. Observe that the Status Quo FCTs increase
steadily as the cross traffic’s offered load increases: this is
due to the aggregate queueing effect. When this happens,
Bundler’s delay-based rate controller could temporarily
lower its rate below the aggregate fair share of the bundled
traffic. Importantly, this throughput reduction is short-lived
because the queueing is short-lived, and long-term Bundler
throughput is not reduced. We believe that this trade-off

Figure 12: Varying number of competing buffer-filling cross

traffic flows. Bundler controls a fixed 20 buffer-filling flows

in each case.

Figure 13: Competing traffic bundles. In both cases, the

aggregate offered load is 84Mbps, as in Figure 9. For "1:1",

we evenly split the offered load between the two Bundles;

for "2:1", one bundle has twice the offered load of the other.

In both cases, each bundle observes improved median FCT

compared to its performance in the baseline scenario.

(short-term throughput reduction for better delay) is a good
one. The lower delay helps the short flows in the bundle,
while the large flows in the bundle are not affected by the
short-term throughput reduction. łMid-sizedž flows in the
bundle can be affected if Bundler sacrifices throughput for too
long. By design, however, Bundler detects such cross-traffic
and disables its delay-control mechanism in response.

Persistent elastic flows.We now evaluate how Bundler’s
throughput is impacted due to competition from varying
amounts of persistent elastic cross-traffic. As discussed in
ğ5, we believe this synthetic scenario is rare in practice, but
when it does occur, Bundler cannot provide benefits, and
since it must łhold backž some queue to detect when the
cross-traffic subsides, its traffic will experience RTT inflation.
Indeed, Figure 12 shows that the component flows in the
bundle experience 18% less throughput on average. The
impact varies from 12% lower throughput with 10 competing
flows to 22% lower with 50.

Competing Bundles. Last, we evaluate the case where
flows from multiple bundles compete with one another. In
Figure 13, we show the performance with two bundles of
traffic competing with one another at the same bottleneck
link. Both bundles comprise of web requests along with a
backlogged Cubic flow. Both bundles maintain low queueing
in the network and successfully control the queues at the

Figure 14: Choosing a congestion control algorithm at

Bundler remains important, just as it is at the end-host. Note

the different y-axis scales for each group of request sizes.

sendbox. Thus, Bundler provides benefits for both bundles,
even when the amount of traffic in each bundle is different.

7.4 Impact of Congestion Control
We now evaluate the impact of a different congestion control
algorithm running at the sendbox and at the endhosts.

Sendbox congestion control. So far we have evaluated
Bundler by running Copa [3] at the sendbox. Figure 14
shows Bundler’s performance with other congestion control
algorithms (namely, Nimbus’s BasicDelay [21] and BBR [10]),
and using SFQ scheduling. We find that using BasicDelay
provides similar benefits over Status Quo as Copa. BBR, on
the other hand, performs slightly worse than Status Quo.
This is because it pushes packets into the network more
aggressively than the other schemes, resulting in a bigger
in-network queue. This, combined with the queue built at
the Bundler, results in the endhosts experiencing higher
queueing delays than Status Quo. This shows that the choice
of congestion control algorithm, and its ability to maintain
small queues in the network, plays an important role.

Endhost congestion control. We used Cubic congestion
control at the endhosts for our experiments so far. When we
configure endhosts to use Reno or BBR, Bundler’s benefits
remain: Bundler achieves 58% lower FCTs in the median
compared to the updated Status Quo where the endhosts use
BBR. This shows that Bundler is compatible with multiple
endhost congestion control algorithms.

7.5 Terminating TCPConnections
Although our Bundler prototype does not terminate con-
nections (as discussed in ğ4.3), we note that terminating
connections does provide one key advantage: the end-to-end
congestion controller will observe a smaller RTT, since the
proxy can acknowledge its segments much faster than the
original receiver. This enables rapid window growth at the
endhosts. While there are, of course, operational concerns
withmanaging the resulting queue, it does provide additional
scheduling opportunities as well as faster ramp-up for
midsized connections.

Figure 15: A proxy-based implementation of Bundler could

yield further benefits to the long flows. Note the different

y-axis scales for each group of request sizes.

How much benefit, then, could a proxy-based Bundler
provide? To evaluate this, we emulate an idealized TCP proxy
by modifying the endhosts to maintain a constant congestion
window of 450 packetsÐslightly larger than the bandwidth-
delay product in our setupÐand increasing the buffering
at the sendbox to hold these packets. The other aspects of
Bundler remain unchanged. The result is in Figure 15.
For the short requests which never leave TCP slow start,

terminating TCP connections does not yield additional
benefits: with or without termination, they finish in a
few RTTs. For medium-to-long requests, terminating TCP
connections yields additional benefits since they no longer
incur the penalty of window growth. Therefore, a site may
benefit from proxying TCP connections at Bundler if its
traffic pattern contains many medium-sized flows which
benefit from fast ramp-up.

7.6 Multipath Detection
As described in ğ5.2, when the ratio of out-of-order to
in-order measurements is above a certain threshold, it
indicates that Bundler’s component flows are likely travers-
ing multiple imbalanced paths. To evaluate the extent to
which this heuristic corresponds with imbalance, we re-run
the emulation experiment from Figure 10 for a variety of
network conditions (bottleneck bandwidth ranging from
12 to 96 Mbps, end-to-end RTTs ranging from 10 to 300
ms, and bottleneck load-balancing from 1 to 32 paths) and
consider the average value reported by the heuristic over
each experiment. The maximum value reported across all
experiments with a single path was 0.4%, while the minimum
value reported across all experiments with 2-32 paths was
20%, two orders of magnitude greater. Thus, this heuristic
provides a very clear separation between single and multiple
path scenarios and a simple threshold is sufficient.

8 REAL INTERNET PATHS
We next evaluate our prototype implementation on real
Internet paths to demonstrate that Bundler can effectively
shift queues in practical settings.

Figure 16: On 5 real-Internet paths, Bundler achieves lower

latencies than Status Quo for latency-sensitive traffic. Each

bar depicts an individual 5-tuple; load-balancing in the

Internet prevents queueing for some 5-tuples. Bundler still

offers scheduling for paths with queueing (achieving 57%

lower latencies overall) while achieving overall throughput

within 1% of that in the Status Quo scenario.

Experiment Setup. We deploy Bundler (sendbox) in a
GCP datacenter in Iowa and generate traffic from multiple
different machines in this datacenter (as detailed below).
The generated traffic is sent to multiple machines in five
different GCP datacenters (in Belgium, Frankfurt, Oregon,
South Carolina, and Tokyo). We configured GCP to route
traffic over the public Internet rather than a private network.
We deploy a Bundler (receivebox) in each of these receiving
datacenters, thus resulting in a total of five bundles spanning
different regions of the globe.

We evaluate two different workloads in this setup: (i) Each
bundle comprising of 10 parallel closed-loop 40 bytes UDP
requests, where the sender issues a new request every time it
receives a response. Wemeasure the request-response RTTs
in this workload to use as a baseline (and call them Base
RTTs). (ii) We add 20 backlogged (iperf) flows to the above
workload in each bundle. We run this workload both with
and without Bundler and measure the UDP request-response
RTTs (represented as Bundler and Status Quo respectively).

Effective SFQ across all flows with Bundler should not
inflate the base request-response RTT. We verified that the
backlogged senders achieve similar throughput in all cases
(2-4Gbit/s on these paths) bothwith andwithout Bundler, and
that the Bundler machine in Iowa is not a bottleneck itself.

Result. Figure 16 shows, for each of the five bundles, the re-
sulting RTT distributions for each of the ten request-response
loops (with the 5 tuples in UDP/IP headers differing across all
ten). Wemake two key observations: (i) The Status Quo RTTs
aresignificantlyhigher than theBaseRTT,which indicates sig-
nificant queueing outside of either site’s control. (ii) Bundler
is able to move these queues and enforce SFQ scheduling ef-
fectively, resulting in request-response RTTs comparable to
Base RTTs, and 57% smaller than Status Quo at the median.

Explanation.Observation (i) above indicates that all of the
conditions in ğ3 held during our experiment and that queues
were indeed building outside of our control. One possibility
is that these queues built up at an egress rate limiter imposed
by GCP. However, our throughput measurements suggest
that this is unlikely9; we used n1-standard-2 machines,
which have a maximum possible egress of 10Gbps each, but
our backlogged senders achieved only 2-4Gbps. Nevertheless,
even if queues did form at GCP’s rate limiter, this represents
a scenario where Bundler is useful: an operator deploying
an application between multiple cloud regions could use
Bundler to enforce scheduling policies on their trafficwithout
negotiating their policy with the cloud provider or knowing
where the bottleneck occurs.

9 DISCUSSION

Composability.Bundles are naturally composable: a sub-site
within site A can deploy its own Bundler to take control of its
fraction of the in-network queues, with the site A’s Bundler
enforcing a scheduling policy across the bundled traffic
from each sub-site. For example, a department within an
institute may bundle its traffic to a collaborating department
in another institute, with the parent institutes bundling the
aggregate traffic across multiple departments.

Scheduling across different bundles at a sendbox. We
evaluate benefits of schedulingwithin a bundle. In practice,
a given sendbox will see traffic from multiple bundles.
Extending different scheduling policies to multiple such
bundles can be done trivially.

Rate allocation across different competing bundles.

When multiple bundles (belonging to different sites) com-
pete at the same bottleneck, Bundler’s congestion control
would ensure a fair rate allocation across each of these bun-
dles, irrespective of the amount of traffic in them. It, therefore,

9We lack visibility into Google’s network and thus were unable to determine

the true location of the bottleneck in this experiment.

provides fairness onper-site basis, as opposed to aper-flowba-
sis, making it more robust to popular end-host strategies such
as openingmultiple connections to increase bandwidth share.

10 CONCLUSION
We have described Bundler, a new type of middlebox which
uses anovel łinnerž congestion control loop for trafficbundles
between two sites to shift the queues from the middle of the
network, where it is difficult to unilaterally express traffic
control policy, to the site itself, where doing so is tractable.
Bundler neither maintains any per-flow state, nor makes any
modifications to the packets. We demonstrate, using both
emulated network experiments and real Internet paths, that
it is possible to shift queues and schedule packets to an extent
sufficient to enforce well-known scheduling disciplines.

ACKNOWLEDGMENTS
WethankSrinivasNarayana,AhmedSaeed, Rachee Singh, the
anonymous EuroSys reviewers, and our shepherd Andreas
Haeberlen for their helpful discussions and feedback. This
work is supported inpart byDARPAcontractHR001117C0048
and NSF grants 1526791, 1563826, 2006346, and 1407470.

REFERENCES
[1] D. Andersen, H. Balakrishnan, F. Kaashoek, and R. Morris. Resilient

Overlay Networks. In SOSP, 2001. 2

[2] D. Ardelean, E. Blanton, and M. Martynov. Remote Active Queue

Management. In International Workshop on Network and Operating

Systems Support for Digital Audio and Video, 2008. 2

[3] V. Arun and H. Balakrishnan. Copa: Congestion Control Combining

Objective Optimization withWindow Adjustments. In NSDI, 2018. 4.3,

5.1, 6.1, 7.1, 7.4

[4] H. Balakrishnan, H. S. Rahul, and S. Seshan. An Integrated Congestion

Management Architecture for Internet Hosts. In SIGCOMM, 1999. 2, 4.4

[5] D. Berger, R. Sitaraman, and M. Harchol-Balter. AdaptSize: Orches-

trating the Hot Object Memory Cache in a Content Delivery Network.

In NSDI, 2017. 3

[6] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,

C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D.Walker. P4:

Programming Protocol-independent Packet Processors. SIGCOMM

CCR, 44(3):87ś95, July 2014. 4.2, 6

[7] R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin. Resource

reservation protocol:(rsvp); version 1 functional specification. 1997. 1

[8] L. S. Brakmo, S. W. O’Malley, and L. L. Peterson. TCP Vegas: New Tech-

niques forCongestionDetection andAvoidance. In SIGCOMM, 1994. 4.3

[9] CAIDA. The CAIDA Anonymized Internet Traces 2016 Dataset - 2016-

01-21. http://www.caida.org/data/passive/passive_2016_dataset.xml,

2016. 3, 7.1

[10] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Jacobson. BBR:

Congestion-Based Congestion Control. ACMQueue, 14(5), Oct. 2016.

4.1, 6.1, 7.4

[11] D. D. Clark, S. Shenker, and L. Zhang. Supporting Real-time Appli-

cations in an Integrated Services Packet Network: Architecture and

Mechanism. In SIGCOMM, 1992. 1

[12] C. Craig. ISPs do throttle traffic ś and the FCC can’t stop it.

https : / /www. infoworld . com/article / 2940538 / internet / isps - do -

throttle-traffic-and-the-fcc-cant-stop-it.html, 2015. 1

[13] J. Crowcroft and P. Oechslin. Differentiated End-to-end Internet

Services Using aWeighted Proportional Fair Sharing TCP. SIGCOMM

Comput. Commun. Rev., 28(3), July 1998. 5.1

[14] A. Demers, S. Keshav, and S. Shenker. Analysis and Simulation of a

Fair Queueing Algorithm. In SIGCOMM, 1989. 1

[15] A. Dhamdhere, D. Clark, A. Gamero-Garrido, M. Luckie, R. Mok,

G. Akiwate, K. Gogia, V. Bajpai, A. Snoeren, and k. claffy. Inferring

Persistent Interdomain Congestion. In SIGCOMM, 2018. 1, 3

[16] E. Dumazet. CoDel - Fair Queuing (FQ) with Controlled Delay (CoDel).

http://man7.org/linux/man-pages/man8/tc-fq_codel.8.html, 2012. 7.2

[17] S. Floyd. TCP and Explicit Congestion Notification. SIGCOMM CCR,

24(5), Oct. 1994. 1

[18] S. Floyd and V. Jacobson. Random Early Detection Gateways for Con-

gestion Avoidance. IEEE/ACM Trans. on Networking, 1(4), Aug. 1993. 1

[19] G. Fowler, L. C. Noll, K.-P. Vo, D. Eastlake, and T. Hansen. The FNV

Non-Cryptographic Hash Algorithm. https://tools.ietf.org/html/draft-

eastlake-fnv-16, 2018. 6.1

[20] P. Garg and Y.-S.Wang. NVGRE: Network Virtualization Using Generic

Routing Encapsulation, 2015. RFC 7637, IETF. 4.5

[21] P. Goyal, A. Narayan, F. Cangialosi, D. Raghavan, S. Narayana,

M. Alizadeh, and H. Balakrishnan. Elasticity Detection: A Building

Block for Delay-Sensitive Congestion Control. ArXiv e-prints, Feb.

2018. 4.3, 5.1, 6, 6.1, 7.1, 7.4

[22] S. Ha, I. Rhee, and L. Xu. CUBIC: A New TCP-Friendly High-Speed

TCP Variant. ACM SIGOPS Operating System Review, 42(5):64ś74, July

2008. 4.1, 7.1

[23] S. Han, K. Jang, A. Panda, S. Palkar, D. Han, and S. Ratnasamy.

SoftNIC: A Software NIC to Augment Hardware. Technical Report

UCB/EECS-2015-155, EECS Department, University of California,

Berkeley, May 2015. 4.2, 6

[24] V. Jacobson. Congestion Avoidance and Control. In SIGCOMM, 1988.

2, 4.1

[25] Y. Jin, S. Renganathan, G. Ananthanarayanan, J. Jiang, V. N. Padman-

abhan, M. Schroder, M. Calder, and A. Krishnamurthy. Zooming in

on wide-area latencies to a global cloud provider. In SIGCOMM, 2019. 3

[26] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek. The Click

Modular Router. ACM Trans. Comput. Syst., 18(3):263ś297, Aug. 2000. 6

[27] A. N. Kuznetsov. tbf. https://linux.die.net/man/8/tc-tbf. 6.1

[28] A. N. Kuznetsov. tc. https://linux.die.net/man/8/tc. 6, 6.1

[29] A. Langley, A. Riddoch, A.Wilk, A. Vicente, C. Krasic, D. Zhang, F. Yang,

F. Kouranov, I. Swett, J. Iyengar, J. Bailey, J. Dorfman, J. Roskind, J. Kulik,

P. Westin, R. Tenneti, R. Shade, R. Hamilton, V. Vasiliev, W.-T. Chang,

and Z. Shi. The QUIC Transport Protocol: Design and Internet-Scale

Deployment. In SIGCOMM, 2017. 4.4

[30] F. Li,A.A.Niaki,D.Choffnes, P.Gill, andA.Mislove. ALarge-ScaleAnal-

ysis of Deployed Traffic Differentiation Practices. In SIGCOMM, 2019. 1

[31] M. Luckie. Scamper: A Scalable and Extensible Packet Prober for Active

Measurement of the Internet. In IMC, 2010. 3

[32] M. Mahalingam, D. Dutt, K. Duda, P. Agarwal, L. Kreeger, T. Sridhar,

M. Bursell, and C. Wright. Virtual eXtensible Local Area Network

(VXLAN): A Framework for Overlaying Virtualized Layer 2 Networks

over Layer 3 Networks, 2014. RFC 7648, IETF. 4.5

[33] J. McCauley, M. Zhao, E. Jackson, B. Raghavan, S. Ratnasamy, and

S. Shenker. Taking anAXE toL2SpanningTrees. In SIGCOMM, 2016. 4.5

[34] McCauley, James andHarchol, Yotam and Panda, Aurojit and Raghavan,

Barath and Shenker, Scott. Enabling a Permanent Revolution in

Internet Architecture. In SIGCOMM, 2019. 4.5

[35] P. E. McKenney. Stochastic Fairness Queueing. In INFOCOM, 1990. 1,

7.1, 7.2

[36] A. Narayan, F. Cangialosi, D. Raghavan, P. Goyal, S. Narayana, R. Mittal,

M. Alizadeh, and H. Balakrishnan. Restructing Endpoint Congestion

Control. In SIGCOMM, 2018. 4.5, 4.5, 6.1, 6.2

[37] R. Netravali, A. Sivaraman, S. Das, A. Goyal, K. Winstein, J. Mickens,

and H. Balakrishnan. Mahimahi: Accurate Record-and-Replay for

HTTP. In USENIX ATC, 2015. 7.1

[38] K. Nichols and V. Jacobson. Controlling Queue Delay. ACM Queue,

10(5), May 2012. 1

[39] R. Pan, P. Natarajan, C. Piglione, M. Prabhu, V. Subramanian, F. Baker,

and B. VerSteeg. PIE: A Lightweight Control Scheme to Address the

Bufferbloat Problem. In High Performance Switching and Routing

(HPSR), 2013. 1

[40] A. Panda, S. Han, K. Jang, M. Walls, S. Ratnasamy, and S. Shenker.

NetBricks: Taking the V out of NFV. InOSDI, 2016. 6

[41] C. Perkins. IP Encapsulation within IP, 1996. RFC 2003, IETF. 4.5

[42] PureVPN. ISP Bandwidth Throttling Explained. https://www.purevpn.

com/blog/isp-bandwidth-throttling-explained/, 2017. 1

[43] S. Renganathan, V. N. Padmanabhan, and A. U. Nambi. Rethinking

networking for five computers. In Proceedings of the 17th ACM

Workshop on Hot Topics in Networks, pages 92ś98. ACM, 2018. 2

[44] S. Blake and D. Black and M. Carlson and E. Davies and Z. Wang andW.

Weiss. An Architecture for Differentiated Services. RFC 2475, 1998. 1

[45] Savage, Stefan andWetherall, David and Karlin, Anna and Anderson,

Tom. Practical Network Support for IP Traceback. In SIGCOMM, 2000.

4.5

[46] M. Shreedhar and G. Varghese. Efficient fair queueing using deficit

round robin. In SIGCOMM, 1995. 1

[47] V. Sivaraman, S. Narayana, O. Rottenstreich, S. Muthukrishnan, and

J. Rexford. Heavy-Hitter Detection Entirely in the Data Plane. In SOSR,

http://www.caida.org/data/passive/passive_2016_dataset.xml
https://www.infoworld.com/article/2940538/internet/isps-do-throttle-traffic-and-the-fcc-cant-stop-it.html
https://www.infoworld.com/article/2940538/internet/isps-do-throttle-traffic-and-the-fcc-cant-stop-it.html
http://man7.org/linux/man-pages/man8/tc-fq_codel.8.html
https://tools.ietf.org/html/draft-eastlake-fnv-16
https://tools.ietf.org/html/draft-eastlake-fnv-16
https://linux.die.net/man/8/tc-tbf
https://linux.die.net/man/8/tc
https://www.purevpn.com/blog/isp-bandwidth-throttling-explained/
https://www.purevpn.com/blog/isp-bandwidth-throttling-explained/

2017. 5.1

[48] I. Stoica, S. Shenker, and H. Zhang. Core-stateless Fair Queueing: A

Scalable Architecture to Approximate Fair Bandwidth Allocations in

High-speed Networks. IEEE/ACM Trans. Netw., 2003. 1

[49] L. Subramanian, I. Stoica, H. Balakrishnan, and R. Katz. OverQoS: An

OverlayBasedArchitecture forEnhancing InternetQoS. InNSDI, 2004. 2

[50] M.-L. R. Team et al. Isp interconnection and its impact on consumer

internet performance-a measurement lab consortium technical report.

https://www.measurementlab.net/publications/isp-interconnection-

impact.pdf, 2014. 3

[51] J.Wroclawski et al. The use of rsvpwith ietf integrated services, 1997. 1

[52] L. Zhang. Virtual Clock: A New Traffic Control Algorithm for Packet

Switching Networks. In SIGCOMM, 1990. 1

[53] P. Zhu, K. Man, Z. Wang, Z. Qian, R. Ensafi, J. A. Halderman, and

H. Duan. Characterizing transnational internet performance and the

great bottleneck of china. Proc. ACMMeasurement and Analalysis of

Computer Systems, 4(1), May 2020. 3

[54] D. Zhuo, Q. Zhang, V. Liu, A. Krishnamurthy, and T. Anderson.

Rack-Level Congestion Control. InHotNets, 2016. 2

https://www.measurementlab.net/publications/isp-interconnection-impact.pdf
https://www.measurementlab.net/publications/isp-interconnection-impact.pdf

	Abstract
	1 Introduction
	2 Related Work
	3 Goals and Assumptions
	4 Designing Bundler
	4.1 Key Insight
	4.2 System Overview
	4.3 Choice of congestion control algorithm
	4.4 Congestion Feedback Mechanism
	4.5 Measuring Congestion
	4.6 Implications of Bundler's Design

	5 Unfavorable Conditions
	5.1 Buffer-Filling Cross Traffic
	5.2 Imbalanced Multipathing

	6 Implementation
	6.1 Prototype
	6.2 Bundler Event Loop

	7 Evaluation
	7.1 Experimental Setup
	7.2 Understanding Performance Benefits
	7.3 Impact of Cross Traffic
	7.4 Impact of Congestion Control
	7.5 Terminating TCP Connections
	7.6 Multipath Detection

	8 Real Internet Paths
	9 Discussion
	10 Conclusion
	Acknowledgments
	References

