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NEW ALGORITHMS
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ALGORITHM COMPLEXITY

Sprout (NSDI 2013): Bayesian forecasting
Remy (SIGCOMM 2013): Offline learning
PCC / PCC Vivace (NSDI 2015 / NSDI 2018): Online learning
Indigo (Usenix ATC 2018): Reinforcement learning
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Abstract

The introduction of a high perfermance packet scheduler to
the Linux xernel and modular congestion control system from
BER makes it possible to draw research congestion control al-
gorithms into the Linux kernel. In this paper, we discuss the in-
troduction of the PCC family of congestion control algorithms
into the Linux kemel. We implement bath loss- and latency-
based congestion control using the rate-based PCC architec-
ture and discuss possible interfaces [or choosing congestion
CcONtro. parameters.
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Introduction

Research on Internet congestion control has produced a va-
ricty of transport layer implementations in the past decades
(e.g.,[6,3,4,2 10, 1, 8], etc.). Many research algoritams
have stayed in the realm of rescarch because of former chal-
lenges in implementing congestion contro. in modern oper-
ating systems. Thankfully, the recent introduction of rate-
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Figure 1: PCC Architecture

may have d:fferent optimal operating points for throughput
and latency. Often, the cnly way for nctwork operators or
developers tn choose different operating points is to cheoose
a completely differsnt congestion control algorithms. Unfor-
tunately, the objective of each congestion control algorithm
may not be clezr, forcing network operators tc test a variety
of algorithms and develop in-house implementaticns to meet
their needs.

Recognizing these challenges for congestion control, and
the great opportunity afforded by the improved Linux net-
working code, we implement PCC-Vivace [4] with both loss-
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CONGESTION CONTROL PLANE
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CONGESTION CONTROL PLANE
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LATENCY TRADEOFF
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SPLIT IMPLEMENTATION

Split CC performs similarly to datapath-native
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SPLIT IMPLEMENTATION
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MEASUREMENT PRIMITIVES

Measurement timestamp

In-order acked bytes
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CUBIC WINDOW DYNAMICS
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WRITE-ONCE RUN-ANYWHERE

Kernel QUIC mICP
60
S
S 4
O
20
0
0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10
Link: 12 Mbit/s, 20ms RTT
250
200/ | |
S 100 W
0
8wl || VIV VNV
O 50
O !
0 10 20 30 0 10 20 30 0 10 20 30

Link: 24 Mbit/s, 20ms RTT



STRESS TEST
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LOW-RTT SCENARIOS
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DESIGN: FAST AND SLOW PATH

Application
Asynchronous
mammm) CCP Agent TX RX
API A A
\ 4
CCP Datapath Shim
Datapath State
CWND Statistics
Datapath RATE
A 4

NIC




SPLIT IMPLEMENTATION
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SPLIT IMPLEMENTATION
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BBR SPLIT IMPLEMENTATION

Asynchronous: Datapath Program:

» Per ACK measurements
» Every report

» Calculate new rate based » Pulse:

OoNn measurements Rate = 1.25 x bottle rate
» Handle switching between » After 1 RTT:

modes Rate = 0.75 x bottle rate

» After 2 RTT:
Rate = bottle rate
» After 8 RTT: repeat
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SLOW START
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NEW CAPABILITIES

Sophisticated algorithms
Rapid prototyping
CC for flow aggregates
Application-integrated CC
Dynamic, path-specific CC



NEXT STEPS CURRENT STATUS

» More algorithms! » Datapaths (libccp):

» Hardware datapaths » Linux TCP

» Impact of new API on » QUIC
congestion control algorithms » mTCP/DPDK

» New capabilities using CCP » CCP Agent (portus)

platform

Reproduce our results and build your own congestion control at

github.com/ccp-project



http://github.com/ccp-project
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EBPF

Front-End Back-End
(Language) (Datapath)
» Event-driven semantics » Congestion control
enforcement

» Explicit reporting model
» Direct access to socket
State

(def (Report (acked @)))
(when true
(:= Report.acked (+ Report.acked Ack.bytes_acked))
(:= Cwnd (+ Cwnd Report.acked))
(fallthrough))
(when (> Flow.lost_pkts_sample 0)
(report))



