RESTRUCTURING ENDPOINT
CONGESTION CONTROL

Akshay Narayan, Frank Cangialosi, Deepti Raghavan, Prateesh Goyal,
Srinivas Narayana, Radhika Mittal, Mohammad Alizadeh, Hari Balakrishnan

b

CONGESTION CONTROL

APPLICATION

Data

NETWORK

DATAPATHS

APPLICATION

A

Data

\4

SMARTNIC MTCP
RDMA EPGA DPDK OSTCP UDP QUIC DCCP

Data I

NETWORK

NEW ALGORITHMS

Nimbus

Indigo

Vivace

XCP RCP DCTCP RC3 ABC
H-TCP FAST LEDBAT NV BBR

Vegas Veno Hybla Illinois Remy PCC Copa
Reno EBCC Westwood Compound Sprout TIMELY

Tahoe NewReno Binomial BIC Cubic PRR DCQCN

) >
1987 1998 2001 2010 2018

ALGORITHM COMPLEXITY

Sprout (NSDI 2013): Bayesian forecasting
Remy (SIGCOMM 2013): Offline learning
PCC / PCC Vivace (NSDI 2015 / NSDI 2018): Online learning
Indigo (Usenix ATC 2018): Reinforcement learning

CROSS PRODUCT OF SADNESS

OS TCP
H-TCP Veno Hybla e
TIMELY XCP Westwood
Compound Sprout EBCC BIC RDMA
Cubic PRR Binomial Nimbus SMARTNIC
DCQCN Reno Vegas Indigo x FPGA
Tahoe NewReno Vivace MTCP
RCP DCTCP RC3 ABC DPDK
FAST LEDBAT NV BBR QUIC

lllinois Remy PCC Copa
DCCP

CROSS PRODUCT OF SADNESS

A PCC-Vivace Kernel Module for Congestion Control

Nathan Jay*, Tomer Gilad** , Nogah Frankel**

Tong Meng*, Brighten Godfrey*, Michael Schapira**

Jae Won Chung***, Vikram Siwach***, Jamal Hadi Salim**#*
University of Illinois Urbana-Champaign®, Hebrew University of Jerusalem in Israel**, Verizon®**

Abstract

The introduction of a high perfermance packet scheduler to
the Linux xernel and modular congestion control system from
BER makes it possible to draw research congestion control al-
gorithms into the Linux kernel. In this paper, we discuss the in-
troduction of the PCC family of congestion control algorithms
into the Linux kemel. We implement bath loss- and latency-
based congestion control using the rate-based PCC architec-
ture and discuss possible interfaces [or choosing congestion
CcONtro. parameters.

Keywords
Linux, networking, TCP, low latency, PCC

Introduction

Research on Internet congestion control has produced a va-
ricty of transport layer implementations in the past decades
(e.g.,[6,3,4,2 10, 1, 8], etc.). Many research algoritams
have stayed in the realm of rescarch because of former chal-
lenges in implementing congestion contro. in modern oper-
ating systems. Thankfully, the recent introduction of rate-

Fes s eeses s e E-
PCC Utility Function
Framework

Theoughpat

Loss Rate

Laenoy 4%‘* Loaming
' Rate »l’a

Throughot Mu» Cortrol

Loss Rate '

Figure 1: PCC Architecture

may have d:fferent optimal operating points for throughput
and latency. Often, the cnly way for nctwork operators or
developers tn choose different operating points is to cheoose
a completely differsnt congestion control algorithms. Unfor-
tunately, the objective of each congestion control algorithm
may not be clezr, forcing network operators tc test a variety
of algorithms and develop in-house implementaticns to meet
their needs.

Recognizing these challenges for congestion control, and
the great opportunity afforded by the improved Linux net-
working code, we implement PCC-Vivace [4] with both loss-

ard Inteancv_ bhancad ntilitv Aimctieme in tha [iniy arnal and

NEW CAPABILITIES

APPLICATION APPLICATION

v v v v v v v v v v

INDEPENDENT CC AGGREGATE CC

CURRENT DESIGN

Application

RX

Congestion
Control

Datapath State

Datapath

NIC

CONGESTION CONTROL PLANE

CCP Agent

Application

X

RX

______________ H

CCP Datapath

Datapath State

Datapath

NIC

CONGESTION CONTROL PLANE

Write-once, Sophisticated New
run-anywhere algorithms capabilities
Application
CCP Agent TX RX
CCP Datapath
Datapath State
Datapath

NIC

LATENCY TRADEOFF

Write-once, Sophisticated New
run-anywhere algorithms capabilities
Application
CCP Agent > RX
Latency
(< 30 ps)
CCP Datapath
Datapath State
Datapath

NIC

SPLIT IMPLEMENTATION

Split CC performs similarly to datapath-native

Application
Asynchror)ous CC) CCP Agent X 2x
Logic :
Synchronous
Measurement wsssmp CCP Datapath
Gathering
Datapath State
CWND Statistics
Datapath RATE

NIC

SPLIT IMPLEMENTATION

Standardized
Datapath Interface

Application
CCP Agent > RX
mmmsm) CCP Datapath
Datapath State
CWND Statistics
Datapath RATE

NIC

MEASUREMENT PRIMITIVES

Measurement timestamp

In-order acked bytes

Out-of-order acked bytes

ECN-marked bytes

Lost bytes

Timeout occurred

RTT sample

Bytes in flight

Outgoing rate

Incoming rate

Demo

Linux Kernel BBR

@ (Term2 Shell Ect View Session Frofies Teclbait Window Help A A 3 T smE m fFritzzem Q @ =
® 1. franc@pda: ~ {ssh;
g rmuri=heass (wx) =1 rant@pate - quch) 02

< ! ‘826EE] O

Safan Can’‘t Connect to the Server

CCP BBR

@ Term2 Shell Edt Vew Session Frofies Toolbalt Window Help e A ¥ T sax) s frivgrM Q @ =

ssgrmmni=leans iwx) x frane@Ppahe - quch) 02

Safari Can‘t Connect to the Server

pen the puge *18.26.2 5:2080" becuuse Sa

CUBIC WINDOW DYNAMICS

w GCP === Kernel

B @)
o o
o o

Congestion Window (Pkts)
N
3

Time (s)

96 Mbit/s, 20ms link RTT

60

WRITE-ONCE RUN-ANYWHERE

Kernel QUIC mICP
60
S
S 4
O
20
0
0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10
Link: 12 Mbit/s, 20ms RTT
250
200/ | |
S 100 W
0
8wl || VIV VNV
O 50
O !
0 10 20 30 0 10 20 30 0 10 20 30

Link: 24 Mbit/s, 20ms RTT

STRESS TEST

5%

cubic reno

7.5
5.0
2.5 iIiI =
0.0 T
1 2 4 8

16 32 64
Flows

. ccp

i i kernel
=i==ii::
1 2 4 8

16 32 64

CPU Utilization (%)

Link: 10Gbit/s, 100us RTT

LOW-RTT SCENARIOS

1.25

1.00 1.15
0.75
0.50
0.25
0.00

20us 50us 100us 200us 300us 400us 500us
2RTT 5RTT 10RTT 20RTT 30RTT A40RTT 50RTT

Reporting Interval

RCT/Baseline

Link: 10Gbit/s, 10 us

DESIGN: FAST AND SLOW PATH

Application
Asynchronous
mammm) CCP Agent TX RX
API A A
\ 4
CCP Datapath Shim
Datapath State
CWND Statistics
Datapath RATE
A 4

NIC

SPLIT IMPLEMENTATION

CCP Agent
A

Application

X

RX
A

libccp

CCP Datapath Shim

Datapath State

Datapath

NIC

SPLIT IMPLEMENTATION

libccp
Per Packet Operations
Shared across datapaths

Application
X RX
A
Datapath State
Datapath
Datapath shim * NIC
Expose datapath variables

BBR SPLIT IMPLEMENTATION

Asynchronous: Datapath Program:

» Per ACK measurements
» Every report

» Calculate new rate based » Pulse:

OoNn measurements Rate = 1.25 x bottle rate
» Handle switching between » After 1 RTT:

modes Rate = 0.75 x bottle rate

» After 2 RTT:
Rate = bottle rate
» After 8 RTT: repeat

g8

8O “ ”I‘\ ""\| /.\ /f \ /I' l\ // \ /ﬂ\ "'\ /"\ /"\ 'f‘ f\ /f \ /“ /'f\\ I‘\ /’\ /"\\ ’/‘\ /'\\ ""
J 'I ’f f / 'l 4 /’ ” "

L LVZAAYAAVARVIRVARVRY \/ v V/ \/ / ARVAVIRVIVAVAY W/ VB

68 f ’

50 N/

Throughput (Mbit/sec)

p T
38 /
28 'f \/

18 |

<) , ' -

(sw) Aeyag Jupanand

75 76 77 78 79 80 81 82 83 84
Time (seconds since start)

SLOW START

()]
o
o

400

200

Congestion Window (Pkts)

o

0.0

=== CGCP, 100ms Report
=== CCP, In-Fold

- CCP, Rate-Based
=== |n—Datapath

0.2 0.4
Time ()
48Mbit/s, 100ms link RTT

0.6

NEW CAPABILITIES

Sophisticated algorithms
Rapid prototyping
CC for flow aggregates
Application-integrated CC
Dynamic, path-specific CC

NEXT STEPS CURRENT STATUS

» More algorithms! » Datapaths (libccp):

» Hardware datapaths » Linux TCP

» Impact of new API on » QUIC
congestion control algorithms » mTCP/DPDK

» New capabilities using CCP » CCP Agent (portus)

platform

Reproduce our results and build your own congestion control at

github.com/ccp-project

http://github.com/ccp-project

Extra Slides

EBPF

Front-End Back-End
(Language) (Datapath)
» Event-driven semantics » Congestion control
enforcement

» Explicit reporting model
» Direct access to socket
State

(def (Report (acked @)))
(when true
(:= Report.acked (+ Report.acked Ack.bytes_acked))
(:= Cwnd (+ Cwnd Report.acked))
(fallthrough))
(when (> Flow.lost_pkts_sample 0)
(report))

