
Network Requirements for Resource Disaggregation

Peter X. Gao
UC Berkeley

Akshay Narayan
UC Berkeley

Sagar Karandikar
UC Berkeley

Joao Carreira
UC Berkeley

Sangjin Han
UC Berkeley

Rachit Agarwal
Cornell University

Sylvia Ratnasamy
UC Berkeley

Scott Shenker
UC Berkeley/ICSI

Abstract

Traditional datacenters are designed as a collection of servers,
each of which tightly couples the resources required for
computing tasks. Recent industry trends suggest a paradigm
shift to a disaggregated datacenter (DDC) architecture
containing a pool of resources, each built as a standalone
resource blade and interconnected using a network fabric.

A key enabling (or blocking) factor for disaggregation
will be the network – to support good application-level
performance it becomes critical that the network fabric
provide low latency communication even under the increased
traffic load that disaggregation introduces. In this paper, we
use a workload-driven approach to derive the minimum
latency and bandwidth requirements that the network in
disaggregated datacenters must provide to avoid degrading
application-level performance and explore the feasibility of
meeting these requirements with existing system designs and
commodity networking technology.

1 Introduction
Existing datacenters are built using servers, each of which
tightly integrates a small amount of the various resources
needed for a computing task (CPU, memory, storage). While
such server-centric architectures have been the mainstay
for decades, recent efforts suggest a forthcoming paradigm
shift towards a disaggregated datacenter (DDC), where
each resource type is built as a standalone resource “blade”
and a network fabric interconnects these resource blades.
Examples of this include Facebook Disaggregated Rack [8],
HP “The Machine” [13], Intel Rack Scale Architecture [19],
SeaMicro [24] as well as prototypes from the computer
architecture community [31,46,51].

These industrial and academic efforts have been driven
largely by hardware architects because CPU, memory and
storage technologies exhibit significantly different trends in

terms of cost, performance and power scaling [10,21,23,60].
This, in turn, makes it increasingly hard to adopt evolving
resource technologies within a server-centric architecture
(e.g., the memory-capacity wall making CPU-memory
co-location unsustainable [62]). By decoupling these
resources, DDC makes it easier for each resource technology
to evolve independently and reduces the time-to-adoption
by avoiding the burdensome process of redoing integration
and motherboard design.1 In addition, disaggregation
also enables fine-grained and efficient provisioning and
scheduling of individual resources across jobs [40].

A key enabling (or blocking) factor for disaggregation
will be the network, since disaggregating CPU from memory
and disk requires that the inter-resource communication
that used to be contained within a server must now traverse
the network fabric. Thus, to support good application-level
performance it becomes critical that the network fabric
provide low latency communication for this increased
load. It is perhaps not surprising then that prototypes from
the hardware community [8, 13, 19, 24, 31, 46, 51] all rely
on new high-speed network components – e.g., silicon
photonic switches and links, PCIe switches and links, new
interconnect fabrics, etc. The problem, however, is that
these new technologies are still a long way from matching
existing commodity solutions with respect to cost efficiency,
manufacturing pipelines, support tools, and so forth. Hence,
at first glance, disaggregation would appear to be gated on
the widespread availability of new networking technologies.

But are these new technologies strictly necessary for disag-
gregation? Somewhat surprisingly, despite the many efforts
towards and benefits of resource disaggregation, there has
been little systematic evaluation of the network requirements
for disaggregation. In this paper, we take a first stab at eval-

1We assume partial CPU-memory disaggregation, where each CPU has
some local memory. We believe this is a reasonable intermediate step toward
full CPU-memory disaggregation.

uating the minimum (bandwidth and latency) requirements
that the network in disaggregated datacenters must provide.
We define the minimum requirement for the network as that
which allows us to maintain application-level performance
close to server-centric architectures; i.e., at minimum, we aim
for a network that keeps performance degradation small for
current applications while still enabling the aforementioned
qualitative benefits of resource disaggregation.

Using a combination of emulation, simulation, and
implementation, we evaluate these minimum network
requirements in the context of ten workloads spanning
seven popular open-source systems — Hadoop, Spark,
GraphLab, Timely dataflow [26, 49], Spark Streaming,
memcached [20], HERD [42], and SparkSQL. We focus
on current applications such as the above because, as we
elaborate in §3, they represent the worst case in terms of the
application degradation that may result from disaggregation.
Our key findings are:

• Network bandwidth in the range of 40 − 100Gbps is
sufficient to maintain application-level performance
within 5% of that in existing datacenters; this is easily in
reach of existing switch and NIC hardware.

• Network latency in the range of 3 − 5µs is needed to
maintain application-level performance. This is a challeng-
ing task. Our analysis suggests that the primary latency
bottleneck stems from network software rather than hard-
ware: we find the latency introduced by the endpoint is
roughly 66% of the inter-rack latency and roughly 81% of
the intra-rack latency. Thus many of the switch hardware
optimizations (such as terabit links) pursued today can
optimize only a small fraction of the overall latency
budget. Instead, work on bypassing the kernel for packet
processing and NIC integration [33] could significantly
impact the feasibility of resource disaggregation.

• We show that the root cause of the above bandwidth
and latency requirements is the application’s memory
bandwidth demand.

• While most efforts focus on disaggregating at the
rack scale, our results show that for some applications,
disaggregation at the datacenter scale is feasible.

• Finally, our study shows that transport protocols frequently
deployed in today’s datacenters (TCP or DCTCP) fail to
meet our target requirements for low latency communi-
cation with the DDC workloads. However, some recent
research proposals [30, 36] do provide the necessary
end-to-end latencies.

Taken together, our study suggests that resource disaggrega-
tion need not be gated on the availability of new networking

Communication Latency (ns) Bandwidth (Gbps)
CPU – CPU 10 500
CPU – Memory 20 500
CPU – Disk (SSD) 104 5
CPU – Disk (HDD) 106 1

Table 1: Typical latency and peak bandwidth requirements
within a traditional server. Numbers vary between hardware.

hardware: instead, minimal performance degradation can be
achieved with existing network hardware (either commodity,
or available shortly).

There are two important caveats to this. First, while we
may not need network changes, we will need changes in
hosts, for which RDMA and NIC integration (for hardware)
and pFabric or pHost (for transport protocols) are promising
directions. Second, our point is not that new networking tech-
nologies are not worth pursuing but that the adoption of dis-
aggregation need not be coupled to the deployment of these
new technologies. Instead, early efforts at disaggregation can
begin with existing network technologies; system builders
can incorporate the newer technologies when doing so makes
sense from a performance, cost, and power standpoint.

Before continuing, we note three limitations of our work.
First, our results are based on ten specific workloads spanning
seven open-source systems with varying designs; we leave to
future work an evaluation of whether our results generalize
to other systems and workloads.2 Second, we focus primarily
on questions of network design for disaggregation, ignoring
many other systems questions (e.g., scheduler designs or
software stack) modulo discussion on understanding latency
bottlenecks. However, if the latter does turn out to be the
more critical bottleneck for disaggregation, one might view
our study as exploring whether the network can “get out of
the way” (as often advocated [37]) even under disaggregation.
Finally, our work looks ahead to an overall system that does
not yet exist and hence we must make assumptions on certain
fronts (e.g., hardware design and organization, data layout,
etc.). We make what we believe are sensible choices, state
these choices explicitly in §2, and to whatever extent possible,
evaluate the sensitivity of these choices on our results.
Nonetheless, our results are dependent on these choices, and
more experience is needed to confirm their validity.

2 Disaggregated Datacenters

Figure 1 illustrates the high-level idea behind a disaggregated
datacenter. A DDC comprises standalone hardware “blades”

2We encourage other researchers to extend the evaluation with our
emulator. https://github.com/NetSys/disaggregation

SAN / NAS
Devices

NIC

C C MM

Server 1

DATACENTER NETWORK

IOH

QPI

QPIQPI

CORE NETWORK
/ INTERNET

SATA
PCIe

NIC

C C MM

Server N

IOH

QPI

QPIQPI

SATA
PCIe

(a) Current datacenter

Storage
Devices

UNIFIED INTERCONNECT

NIC

NIC

C C C C M M
M

Shared disaggregated
memoryCPUs

CORE NETWORK
/ INTERNET

GPU FGPA ASIC

Specialized Hardware

(b) Disaggregated datacenter

Figure 1: High-level architectural differences between server-centric and resource-disaggregated datacenters.

for each resource type, interconnected by a network fabric.
Multiple prototypes of disaggregated hardware already exist
— Intel RSA [19], HP “The Machine” [13], Facebook’s Disag-
gregated Rack [8], Huawei’s DC3.0 [12], and SeaMicro [24],
as well as research prototypes like FireBox [31], soN-
UMA [51], and memory blades [46]. Many of these systems
are proprietary and/or in the early stages of development;
nonetheless, in our study we draw from what information is
publicly available to both borrow from and critically explore
the design choices made by existing hardware prototypes.

In this section, we present our assumptions regarding the
hardware (§2.1) and system (§2.2) architecture in a disaggre-
gated datacenter. We close the section by summarizing the
key open design choices that remain after our assumptions
(§2.3); we treat these as design “knobs” in our evaluation.

2.1 Assumptions: Hardware Architecture

Partial CPU-memory disaggregation. In general, disag-
gregation suggests that each blade contains one particular
resource with a direct interface to the network fabric (Fig. 1).
One exception to this strict decoupling is CPU blades: each
CPU blade retains some amount of local memory that acts
as a cache for remote memory dedicated for cores on that
blade3. Thus, CPU-memory disaggregation can be viewed as
expanding the memory hierarchy to include a remote level,
which all CPU blades share.

This architectural choice is reported in prior
work [12, 31, 46, 47]. While we assume that partial
CPU-memory disaggregation will be the norm, we go a step
further and evaluate how the amount of local memory im-
pacts network requirements in terms of network bandwidth
and latency, and transport-layer flow completion times.

Cache coherence domain is limited to a single compute
blade. As articulated by others [12, 13, 31], this has the

3We use “remote memory” to refer to the memory located on a stan-
dalone memory blade.

important implication that CPU-to-CPU cache coherence
traffic does not hit the network fabric. While partial
CPU-memory disaggregation reduces the traffic hitting the
network, cache coherence traffic can not be cached and
hence directly impacts the network. This assumption is
necessary because an external network fabric is unlikely
to support the latency and bandwidth requirements for
inter-CPU cache coherence (Table 1).

Resource Virtualization. Each resource blade must support
virtualization of its resources; this is necessary for resources
to be logically aggregated into higher-level abstractions
such as VMs or containers. Virtualization of IO resources
is widely available even today: many IO device controllers
now support virtualization via PCIe, SR-IOV, or MR-IOV
features [41] and the same can be leveraged to virtualize IO
resources in DDC. The disaggregated memory blade proto-
typed by Lim et al. [46] includes a controller ASIC on each
blade that implements address translation between a remote
CPU’s view of its address space and the addressing used
internally within the blade. Other research efforts assume
similar designs. We note that while the implementation of
such blades may require some additional new hardware, it
requires no change to existing components such as CPUs,
memory modules, or storage devices themselves.

Scope of disaggregation. Existing prototypes limit the
scope of disaggregation to a very small number of racks. For
example, FireBox [31] envisions a single system as spanning
approximately three racks and assumes that the logical
aggregation and allocation of resources is similarly scoped;
i.e., the resources allocated to a higher-level abstraction such
as a VM or a container are selected from a single FireBox.
Similarly, the scope of disaggregation in Intel’s RSA is a sin-
gle rack [19]. In contrast, in a hypothetical datacenter-scale
disaggregated system, resources assigned to (for example) a
single VM could be selected from anywhere in the datacenter.

Network designs. Corresponding to their assumed scope

Class Application Domain Application System Dataset
Off-disk Batch WordCount Hadoop Wikipedia edit history [27]
Off-disk Batch Sort Hadoop Sort benchmark generator

Class A Graph Processing Collaborative Filtering GraphLab Netflix movie rating data [22]
Point Queries Key-value store Memcached YCSB

Streaming Queries Stream WordCount Spark Streaming Wikipedia edit history [27]
In-memory Batch WordCount Spark Wikipedia edit history [27]
In-memory Batch Sort Spark Sort benchmark generator

Class B Parallel Dataflow Pagerank Timely Dataflow Friendster Social Network [9]
In-memory Batch SQL Spark SQL Big Data Benchmark [6]

Point Queries Key-value store HERD YCSB

Table 2: Applications, workloads, systems and datasets used in our study. We stratify the classes in Section 3.

of disaggregation, existing prototypes assume a different
network architecture for within the rack(s) that form a unit
of disaggregation vs. between such racks. To our knowledge,
all existing DDC prototypes use specialized – even
proprietary [12,19,24] – network technologies and protocols
within a disaggregated rack(s). For example, SeaMicro uses a
proprietary Torus-based topology and routing protocol within
its disaggregated system; Huawei propose a PCIe-based
fabric [14]; FireBox assumes an intra-FireBox network of
1Tbps Silicon photonic links interconnected by high-radix
switches [31,43]; and Intel’s RSA likewise explores the use
of Silicon photonic links and switches.

Rather than simply accepting the last two design choices
(rack-scale disaggregation and specialized network designs),
we critically explore when and why these choices are
necessary. Our rationale in this is twofold. First, these are
both choices that appear to be motivated not by fundamental
constraints around disaggregating memory or CPU at the
hardware level, but rather by the assumption that existing
networking solutions cannot meet the (bandwidth/latency)
requirements that disaggregation imposes on the network.
To our knowledge, however, there has been no published
evaluation showing this to be the case; hence, we seek to
develop quantifiable arguments that either confirm or refute
the need for these choices.

Second, these choices are likely to complicate or delay the
deployment of DDC. The use of a different network archi-
tecture within vs. between disaggregated islands leads to the
complexity of a two-tier heterogeneous network architecture
with different protocols, configuration APIs, etc., for each;
e.g., in the context of their FireBox system, the authors envis-
age the use of special gateway devices that translate between
their custom intra-FireBox protocols and TCP/IP that is used
between FireBox systems; Huawei’s DC3.0 makes similar
assumptions. Likewise, many of the specialized technologies
these systems use (e.g., Si-photonic [59]) are still far from

mainstream. Hence, once again, rather than assume change
is necessary, we evaluate the possibility of maintaining a
uniform “flat” network architecture based on existing com-
modity components as advocated in prior work [28,38,39].

2.2 Assumptions: System Architecture
In contrast to our assumptions regarding hardware which
we based on existing prototypes, we have less to guide us on
the systems front. We thus make the following assumptions,
which we believe are reasonable:

System abstractions for logical resource aggregations. In
a DDC, we will need system abstractions that represent a logi-
cal aggregation of resources, in terms of which we implement
resource allocation and scheduling. One such abstraction in
existing datacenters is a VM: operators provision VMs to
aggregate slices of hardware resources within a server, and
schedulers place jobs across VMs. While not strictly neces-
sary, we note that the VM model can still be useful in DDC.4

For convenience, in this paper we assume that computational
resources are still aggregated to form VMs (or VM-like con-
structs), although now the resources assigned to a VM come
from distributed hardware blades. Given a VM (or VM-like)
abstraction, we assign resources to VMs differently based on
the scope of disaggregation that we assume: for rack-scale
disaggregation, a VM is assigned resources from within a
single rack while, for datacenter-scale disaggregation, a VM
is assigned resources from anywhere in the datacenter.

Hardware organization. We assume that resources are
organized in racks as in today’s datacenters. We assume a
“mixed” organization in which each rack hosts a mix of dif-
ferent types of resource blades, as opposed to a “segregated”
organization in which a rack is populated with a single

4In particular, continuing with the abstraction of a VM would allow exist-
ing software infrastructure — i.e., hypervisors, operating systems, datacenter
middleware, and applications — to be reused with little or no modification.

type of resource (e.g., all memory blades). This leads to a
more uniform communication pattern which should simplify
network design and also permits optimizations that aim to
localize communication; e.g., co-locating a VM within a rack,
which would not be possible with a segregated organization.

Page-level remote memory access. In traditional servers,
the typical memory access between CPU and DRAM occurs
in the unit of a cache-line size (64B in x86). In contrast,
we assume that CPU blades access remote memory at the
granularity of a page (4KB in x86), since page-level access
has been shown to better exploit spatial locality in common
memory access patterns [46]. Moreover, this requires little
or no modification to the virtual memory subsystems
of hypervisors or operating systems, and is completely
transparent to user-level applications.

Block-level distributed data placement. We assume that
applications in DDC read and write large files at the
granularity of “sectors” (512B in x86). Furthermore, the disk
block address space is range partitioned into “blocks”, that
are uniformly distributed across the disk blades. The latter is
partially motivated by existing distributed file systems (e.g.,
HDFS) and also enables better load balancing.

2.3 Design knobs
Given the above assumptions, we are left with two key sys-
tem design choices that we treat as “knobs” in our study: the
amount of local memory on compute blades and the scope of
disaggregation (e.g., rack- or datacenter-scale). We explore
how varying these knobs impacts the network requirements
and traffic characteristics in DDC in the following section.

The remainder of this paper is organized as follows.
We first analyze network-layer bandwidth and latency
requirements in DDC (§3) without considering contention
between network flows, then in §4 relax this constraint. We
end with a discussion of the future directions in §5.

3 Network Requirements
We start by evaluating network latency and bandwidth
requirements for disaggregation. We describe our evaluation
methodology (§3.1), present our results (§3.2) and then
discuss their implications (§3.3).

3.1 Methodology
In DDC, traffic between resources that was contained within
a server is now carried on the “external” network. As with
other types of interconnects, the key requirement will be low
latency and high throughput to enable this disaggregation.
We review the forms of communication between resources
within a server in Table 1 to examine the feasibility of

such a network. As mentioned in §2, CPU-to-CPU cache
coherence traffic does not cross the external network. For I/O
traffic to storage devices, the current latency and bandwidth
requirements are such that we can expect to consolidate
them into the network fabric with low performance impact,
assuming we have a 40Gbps or 100Gbps network. Thus,
the dominant impact to application performance will come
from CPU-memory disaggregation; hence, we focus on
evaluating the network bandwidth and latency required to
support remote memory.

As mentioned earlier, we assume that remote memory is
managed at the page granularity, in conjunction with virtual
memory page replacement algorithms implemented by the
hypervisor or operating system. For each paging operation
there are two main sources of performance penalty: i) the
software overhead for trap and page eviction and ii) the
time to transfer pages over the network. Given our focus
on network requirements, we only consider the latter in
this paper (modulo a brief discussion on current software
overheads later in this section).

Applications. We use workloads from diverse applications
running on real-world and benchmark datasets, as shown
in Table 2. The workloads can be classified into two classes
based on their performance characteristics. We elaborate
briefly on our choice to take these applications as is, rather
than seek to optimize them for DDC. Our focus in this paper
is on understanding whether and why networking might gate
the deployment of DDC. For this, we are interested in the
degradation that applications might suffer if they were to run
in DDC. We thus compare the performance of an application
in a server-centric architecture to its performance in the
disaggregated context we consider here (with its level of
bandwidth and local memory). This would be strictly worse
than if we compared to the application’s performance if it had
been rewritten for this disaggregated context. Thus, legacy
(i.e., server-centric) applications represent the worst-case in
terms of potential degradation and give us a lower bound
on the network requirements needed for disaggregation (it
might be that rewritten applications could make do with
lower bandwidths). Clearly, if new networking technologies
exceed this lower bound, then all applications (legacy and
“native” DDC) will benefit. Similarly, new programming
models designed to exploit disaggregation can only improve
the performance of all applications. The question of how to
achieve improved performance through new technologies
and programming models is an interesting one but beyond
the scope of our effort and hence one we leave to future work.

Emulating remote memory. We run the following appli-
cations unmodified with 8 threads and reduce the amount
of local memory directly accessible by the applications.

Hadoop
Wordcount

Hadoop
Sort

Graphlab
CF

Memcached
YCSB

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

12.0%

14.0%
P
e
rf

o
rm

a
n
c
e
 D

e
g
ra

d
a
ti

o
n

1us/100G 1us/40G 1us/10G 5us/100G 5us/40G 5us/10G 10us/100G 10us/40G 10us/10G

Spark
Wordcount

Spark
Sort

Spark SQL
BDB

Timely Dataflow
Pagerank

HERD
YCSB

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

P
e
rf

o
rm

a
n
c
e
 D

e
g
ra

d
a
ti

o
n

1us/100G 1us/40G 1us/10G 3us/100G 3us/40G 3us/10G 5us/100G 5us/40G 5us/10G

Figure 2: Comparison of application-level performance in disaggregated datacenters with respect to existing server-centric
architectures for different latency/bandwidth configurations and 25% local memory on CPU blades — Class A apps (top)
and Class B apps (bottom). To maintain application-level performance within reasonable performance bounds (∼5% on an
average), Class A apps require 5µs end-to-end latency and 40Gbps bandwidth, and Class B apps require 3µs end-to-end
latency and 40−100Gbps bandwidth. See §3.2 for detailed discussion.

To emulate remote memory accesses, we implement a
special swap device backed by the remaining physical
memory rather than disk. This effectively partitions main
memory into “local” and “remote” portions where existing
page replacement algorithms control when and how pages
are transferred between the two. We tune the amount of
“remote” memory by configuring the size of the swap device;
remaining memory is “local”. We intercept all page faults
and inject artificial delays to emulate network round-trip
latency and bandwidth for each paging operation. Note that
when a page fault occurs, the page is not actually swapped
over the network; instead, it is swapped to the remaining part
of the memory on the same machine.

We measure relative application-level performance on the
basis of job completion time as compared to the zero-delay
case. Thus, our results do not account for the delay
introduced by software overheads for page operations and
should be interpreted as relative performance degradations
over different network configurations. Note too that the
delay we inject is purely an artificial parameter and hence
does not (for example) realistically model queuing delays
that may result from network congestion caused by the extra
traffic due to disaggregation; we consider network-wide
traffic and effects such as congestion in §4.

Testbed. Each application operates on ∼ 125GB of
data equally distributed across an Amazon EC2 cluster
comprising 5 m3.2xlarge servers. Each of these servers

has 8 vCPUs, 30GB main memory, 2×80GB SSD drives
and a 1Gbps access link bandwidth. We enabled EC2’s
Virtual Private Network (VPC [3]) capability in our cluster
to ensure no interference with other Amazon EC2 instances.

We verified that m3.2xlarge instances’ 1Gbps access
links were not a bottleneck to our experiment in two
ways. First, in all cases where the network approached
full utilization, CPU was fully utilized, indicating that the
CPU was not blocked on network calls. Next, we ran our
testbed on c3.4xlarge instances with 2Gbps access links
(increased network bandwidth with roughly the same CPU).
We verified that even with more bandwidth, all applications
for which link utilization was high maintained high CPU
utilization. This aligns with the conclusions drawn in [53].

We run batch applications (Spark, Hadoop, Graphlab, and
Timely Dataflow) in a cluster with 5 worker nodes and 1
master node; the job request is issued from the master node.
For point-query applications (memcached, HERD), requests
are sent from client to server across the network. All applica-
tions are multi-threaded, with the same number of threads as
cores. To compensate for the performance noise on EC2, we
run each experiment 10 times and take the median result.

3.2 Results

We start by evaluating application performance in a
disaggregated vs. a server-centric architecture. Figure 2 plots
the performance degradation for each application under

20 40 60 80 100

Bandwidth (Gbps)

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%
P
e
rf

o
rm

a
n
c
e
 D

e
g
ra

d
a
ti

o
n HERD - YCSB

Spark - Wordcount

Spark SQL - BDB

Spark - Sort

Timely Dataflow - Pagerank

Hadoop - Sort

Graphlab - CF

Hadoop - Wordcount

Memcached - YCSB

Figure 3: Impact of network bandwidth on the results of Fig-
ure 2 for end-to-end latency fixed to 5µs and local memory
fixed to 25%.

0 5 10 15 20 25 30 35 40

Latency (us)

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

120.0%

140.0%

160.0%

180.0%

P
e
rf

o
rm

a
n
c
e
 D

e
g
ra

d
a
ti

o
n Spark - Wordcount

Sprak SQL - BDB

Timely Dataflow - Pagerank

Spark - Sort

HERD - YCSB

Hadoop - Sort

Graphlab - CF

Hadoop - Wordcount

Memcached - YCSB

Figure 4: Impact of network latency on the results of Figure 2
for bandwidth fixed to 40Gbps and local memory fixed to
25%.

20.0% 40.0% 60.0% 80.0% 100.0%

Local Memory Ratio

-5.0%

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

P
e
rf

o
rm

a
n
c
e
 D

e
g
ra

d
a
ti

o
n HERD - YCSB

Spark - Sort

Spark - Wordcount

Spark SQL - BDB

Timely Dataflow - Pagerank

Hadoop - Sort

Graphlab - CF

Hadoop - Wordcount

Memcached - YCSB

Figure 5: Impact of “local memory” on the results of Figure 2
for end-to-end latency fixed to 5µs and network bandwidth
40Gbps. Negative values are due to small variations in tim-
ings between runs.

different assumptions about the latency and bandwidth
to remote memory. In these experiments, we set the local
memory in the disaggregated scenario to be 25% of that in
the server-centric case (we will examine our choice of 25%
shortly). Note that the injected latency is constant across
requests; we leave studying the effects of possibly high tail

Network Provision Class A Class B
5µs, 40Gbps 20% 35%
3µs, 100Gbps 15% 30%

Table 3: Class B apps require slightly higher local memory
than Class A apps to achieve an average performance penalty
under 5% for various latency-bandwidth configurations.

latencies to future work.
From Figure 2, we see that our applications can be broadly

divided into two categories based on the network latency
and bandwidth needed to achieve a low performance penalty.
For example, for the applications in Fig. 2 (top) — Hadoop
Wordcount, Hadoop Sort, Graphlab and Memcached
— a network with an end-to-end latency of 5µs and
bandwidth of 40Gbps is sufficient to maintain an average
performance penalty under 5%. In contrast, the applications
in Fig. 2 (bottom) — Spark Wordcount, Spark Sort, Timely,
SparkSQL BDB, and HERD — require network latencies
of 3µs and 40 − 100Gbps bandwidth to maintain an
average performance penalty under 8%. We term the former
applications Class A and the latter Class B and examine
the feasibility of meeting their respective requirements in
§3.3. We found that Spark Streaming has a low memory
utilization. As a result, its performance degradation is near
zero in DDC, and we show it only in Figure 6.

Sensitivity analysis. Next, we evaluate the sensitivity of
application performance to network bandwidth and latency.
Fig. 3 plots the performance degradation under increasing
network bandwidth assuming a fixed network latency of
5µs while Fig. 4 plots degradation under increasing latency
for a fixed bandwidth of 40Gbps; in both cases, local
memory is set at 25% as before. We see that beyond 40Gbps,
increasing network bandwidth offers little improvement in
application-level performance. In contrast, performance —
particularly for Class B apps — is very sensitive to network
latency; very low latencies (3− 5µs) are needed to avoid
non-trivial performance degradation.

Finally, we measure how the amount of local memory
impacts application performance. Figure 5 plots the perfor-
mance degradation that results as we vary the fraction of local
memory from 100% (which corresponds to no CPU-memory
disaggregation) down to 10%, assuming a fixed network la-
tency and bandwidth of 5µs and 40Gbps respectively; note
that the 25% values (interpolated) in Figure 5 correspond to
5µs, 40Gbps results in Figure 2. As expected, we see that
Class B applications are more sensitive to the amount of local
memory than Class A apps; e.g., increasing the amount of
local memory from 20% to 30% roughly halves the perfor-
mance degradation in Class B from approximately 15% to

0 1 2 3 4 5 6
Remote Memory Bandwidth Utilization, Gbps

0.00

0.05

0.10

0.15

0.20

P
e
rf

o
rm

a
n
ce

 D
e
g
ra

d
a
ti

o
n

TimelyDataflow
PageRank

Spark
Sort

Hadoop
Sort

Spark Streaming
Wordcount

Hadoop
Wordcount

Spark
Wordcount

Memcached
YCSB

Graphlab
CF

HERD
YCSB

SparkSQL
BDB

(a) Remote Memory Bandwidth Utilization

0 10 20 30 40 50 60
Memory Bandwidth Utilization, Gbps

0.00

0.05

0.10

0.15

0.20

P
e
rf

o
rm

a
n
ce

 D
e
g
ra

d
a
ti

o
n

TimelyDataflow
PageRank

Spark
Sort

Hadoop
Sort

Spark Streaming
Wordcount

Hadoop
Wordcount

Spark
Wordcount

Memcached
YCSB

Graphlab
CF

HERD
YCSB

SparkSQL
BDB

(b) Memory Bandwidth Utilization

Figure 6: Performance degradation of applications is correlated with the swap memory bandwidth and overall memory
bandwidth utilization.

7%. In all cases, increasing the amount of local memory be-
yond 40% has little to no impact on performance degradation.

Understanding (and extrapolating from) our results.
One might ask why we see the above requirements – i.e.,
what characteristic of the applications we evaluated led to
the specific bandwidth and latency requirements we report?
An understanding of these characteristics could also allow
us to generalize our findings to other applications.

We partially answer this question using Figure 6, which
plots the performance degradation of the above nine
workloads against their swap and memory bandwidth5.
Figure 6(a) and 6(b) show that an application’s performance
degradation is very strongly correlated with its swap
bandwidth and well correlated with its memory bandwidth.
The clear correlation with swap bandwidth is to be expected.
That the overall memory bandwidth is also well correlated
with the resultant degradation is perhaps less obvious and
an encouraging result as it suggests that an application’s
memory bandwidth requirements might serve as a rough
indicator of its expected degradation under disaggregation:
this is convenient as memory bandwidth is easily measured
without requiring any of our instrumentation (i.e., emulating
remote memory by a special swap device, etc.). Thus it
should be easy for application developers to get a rough
sense of the performance degradation they might expect
under disaggregation and hence the urgency of rewriting
their application for disaggregated contexts.

We also note that there is room for more accurate
predictors: the difference between the two figures (Figs. 6(a)

5We use Intel’s Performance Counter Monitor software [18] to read the
uncore performance counters that measure the number of bytes written to
and read from the integrated memory controller on each CPU. We confirmed
using benchmarks designed to saturate memory bandwidth [4] that we could
observe memory bandwidth utilization numbers approaching the reported
theoretical maximum. As further validation, we verified that our Spark SQL
measurement is consistent with prior work [55].

and 6(b)) shows that the locality in memory access patterns
does play some role in the expected degradation (since
the swap bandwidth which is a better predictor captures
only the subset of memory accesses that miss in local
memory). Building better prediction models that account
for an application’s memory access pattern is an interesting
question that we leave to future work.

Access Granularity. Tuning the granularity of remote mem-
ory access is an interesting area for future work. For example,
soNUMA [51] accesses remote memory at cache-line size
granularity, which is much smaller than page-size. This may
allow point-query applications to optimize their dependence
on remote memory. On the other hand, developers of
applications which use large, contiguous blocks of memory
may wish to use hugepages to reduce the number of page
table queries and thus speed up virtual memory mapping.
Since Linux currently limits (non-transparent) hugepages
from being swapped out of physical memory, exploring this
design option is not currently feasible.

Overall, we anticipate that programmers in DDC will face
a tradeoff in optimizing their applications for disaggregation
depending on its memory access patterns.

Remote SSD and NVM. Our methodology is not limited
to swapping to remote memory. In fact, as long as the 3µs
latency target is met, there is no limitation on the media
of the remote storage. We envision that the remote mem-
ory could be replaced by SSD or forthcoming Non-Volatile
Memory (NVM) technologies, and anticipate different price
and performance tradeoff for these technologies.

Summary of results. In summary, supporting memory dis-
aggregation while maintaining application-level performance
within reasonable bounds imposes certain requirements
on the network in terms of the end-to-end latency and
bandwidth it must provide. Moreover, these requirements

are closely related to the amount of local memory available
to CPU blades. Table 3 summarizes these requirements for
the applications we studied. We specifically investigate a
few combinations of network latency, bandwidth, and the
amount of local memory needed to maintain a performance
degradation under 5%. We highlight these design points
because they represent what we consider to be sweet spots
in achievable targets both for the amount of local memory
and for network requirements, as we discuss next.

3.3 Implications and Feasibility

We now examine the feasibility of meeting the requirements
identified above.

Local memory. We start with the requirement of between
20 − 30% local memory. In our experiments, this corre-
sponds to between 1.50−2.25GB/core. We look to existing
hardware prototypes for validation of this requirement. The
FireBox prototype targets 128GB of local memory shared
by 100 cores leading to 1.28GB/core,6 while the analysis in
[46] uses 1.5GB/core. Further, [47] also indicates 25% local
memory as a desirable setting, and HP’s “The Machine” [2]
uses an even larger fraction of local memory: 87%. Thus
we conclude that our requirement on local memory is
compatible with demonstrated hardware prototypes. Next,
we examine the feasibility of meeting our targets for network
bandwidth and latency.

Network bandwidth. Our bandwidth requirements are
easily met: 40Gbps is available today in commodity
datacenter switches and server NICs [16]; in fact, even
100Gbps switches and NICs are available, though not as
widely [1]. Thus, ignoring the potential effects of congestion
(which we consider next in §4), providing the network
bandwidth needed for disaggregation should pose no
problem. Moreover, this should continue to be the case in
the future because the trend in link bandwidths currently
exceeds that in number of cores [5,7,11].

Network latency. The picture is less clear with respect to
latency. In what follows, we consider the various components
of network latency and whether they can be accommodated
in our target budget of 3µs (for Class B apps) to 5µs (for
Class A apps).

Table 4 lists the six components of the end-to-end latency
incurred when fetching a 4KB page using 40Gbps links,
together with our estimates for each. Our estimates are
based on the following common assumptions about existing
datacenter networks: (1) the one-way path between servers
in different racks crosses three switches (two ToR and

6We thank Krste Asanović for clarification on FireBox’s technical specs.

one fabric switch) while that between servers in the same
rack crosses a single ToR switch, (2) inter-rack distances
of 40m and intra-rack distances of 4m with a propagation
speed of 5ns/m, (3) cut-through switches.7 With this, our
round-trip latency includes the software overheads associated
with moving the page to/from the NIC at both the sending
and receiving endpoints (hence 2x the OS and data copy
overheads), 6 switch traversals, 4 link traversals in each
direction including two intra-rack and two cross-rack, and the
transmission time for a 4KB page (we ignore transmission
time for the page request), leading to the estimates in Table 4.

We start by observing that the network introduces three
unavoidable latency overheads: (i) the data transmission
time, (ii) the propagation delay; and (iii) the switching delay.
Together, these components contribute to roughly 3.14µs
across racks and 1.38µs within a rack.8

In contrast, the network software at the endpoints is a sig-
nificant contributor to the end-to-end latency! Recent work re-
ports a round-trip kernel processing time of 950 ns measured
on a 2.93GHz Intel CPU running FreeBSD (see [56] for de-
tails), while [52] reports an overhead of around 1µs to copy
data between memory and the NIC. With these estimates, the
network software contributes roughly 3.9µs latency — this
represents 55% of the end-to-end latency in our baseline inter-
rack scenario and 73% in our baseline intra-rack scenario.

The end-to-end latencies we estimated in our baseline
scenarios (whether inter- or intra-rack) fail to meet our target
latencies for either Class B or Class A applications. Hence,
we consider potential optimizations and technologies that
can reduce these latencies. Two technologies show promise:
RDMA and integrated NICs.

Using RDMA. RDMA effectively bypasses the packet
processing in the kernel, thus eliminating the OS overheads
from Table 4. Thus, using RDMA (Infiniband [15] or
Omnipath [17]), we estimate a reduced end-to-end latency
of 5.14µs across racks (column #4 in Table 4) and 3.38µs
within a rack.

Using NIC integration. Recent industry efforts pursue the
integration of NIC functions closer to the CPU [33] which
would reduce the overheads associated with copying data
to/from the NIC. Rosenblum et al. [57] estimate that such
integration together with certain software optimizations
can reduce copy overheads to sub-microseconds, which we
estimate at 0.5µs (similar to [57]).

7As before, we ignore the queuing delays that may result from congestion
at switches – we will account for this in §4.

8Discussions with switch vendors revealed that they are approaching the
fundamental limits in reducing switching delays (for electronic switches),
hence we treat the switching delay as unavoidable.

Component Baseline (µs) With RDMA (µs) With RDMA + NIC Integr. (µs)
Inter-rack Intra-rack Inter-rack Intra-rack Inter-rack Intra-rack

OS 2×0.95 2×0.95 0 0 0 0
Data copy 2×1.00 2×1.00 2×1.00 2×1.00 2×0.50 2×0.50
Switching 6×0.24 2×0.24 6×0.24 2×0.24 6×0.24 2×0.24

Propagation (Inter-rack) 4×0.20 0 4×0.20 0 4×0.20 0
Propagation (Intra-rack) 4×0.02 4×0.02 4×0.02 4×0.02 4×0.02 4×0.02

Transmission 1×0.82 1×0.82 1×0.82 1×0.82 1×0.82 1×0.82
Total 7.04µs 5.28µs 5.14µs 3.38µs 4.14µs 2.38µs

Table 4: Achievable round-trip latency (Total) and the components that contribute to the round-trip latency (see discussion in
§3.3) on a network with 40Gbps access link bandwidth (one can further reduce the Total by 0.5µs using 100Gbps access link
bandwidth). The baseline denotes the latency achievable with existing network technology. The fractional part in each cell is
the latency for one traversal of the corresponding component and the integral part is the number of traversal performed in one
round-trip time (see discussion in §3.3).

Using RDMA and NIC integration. As shown in column
#5 in Table 4, the use of RDMA together with NIC
integration reduces the end-to-end latency to 4.14µs across
racks; within a rack, this further reduces down to 2.38µs
(using the same differences as in column #2 and column #3).

Takeaways. We highlight a few takeaways from our analysis:

• The overhead of network software is the key barrier to
realizing disaggregation with current networking technolo-
gies. Technologies such as RDMA and integrated NICs
that eliminate some of these overheads offer promise:
reducing end-to-end latencies to 4.14µs between racks
and 2.38µs within a rack. However, demonstrating such
latencies in a working prototype remains an important
topic for future exploration.

• Even assuming RDMA and NIC integration, the end-to-
end latency across racks (4.14µs) meets our target latency
only for Class A, but not Class B, applications. Our target
latency for Class B apps is only met by the end-to-end
latency within a rack. Thus, Class B jobs will have to
be scheduled within a single rack (or nearby racks).
That is, while Class A jobs can be scheduled at blades
distributed across the datacenter, Class B jobs will need to
be scheduled within a rack. The design and evaluation of
such schedulers remains an open topic for future research.

• While new network hardware such as high-bandwidth
links (e.g., 100Gbps or even 1Tbps as in [31, 43]) and
high-radix switches (e.g., 1000 radix switch [31]) are
certainly useful, they optimize a relatively small piece of
the overall latency in our baseline scenario technologies.
All-optical switches also fall into this category – providing
both potentially negligible switching delay and high
bandwidth. That said, once we assume the benefits of
RDMA and NIC integration, then the contribution of new

links and switches could bring even the cross-rack latency
to within our 3µs target for Class B applications, enabling
true datacenter-scale disaggregation; e.g., using 100Gbps
links reduces the end-to-end latency to 3.59µs between
racks, extremely close to our 3µs.

• Finally, we note that managing network congestion to
achieve zero or close-to-zero queuing within the network
will be essential; e.g., a packet that is delayed such that
it is queued behind (say) 4 packets will accumulate an
additional delay of 4 × 0.82µs! Indeed, reducing such
transmission delays may be the reason to adopt high-speed
links. We evaluate the impact of network congestion in
the following section.

4 Network Designs for Disaggregation
Our evaluation has so far ignored the impact of queuing delay
on end-to-end latency and hence application performance;
we remedy the omission in this section. The challenge is that
queuing delay is a function of the overall network design, in-
cluding: the traffic workload, network topology and routing,
and the end-to-end transport protocol. Our evaluation focuses
on existing proposals for transport protocols, with standard
assumptions about the datacenter topology and routing. How-
ever, the input traffic workload in DDC will be very different
from that in a server-centric datacenter and, to our knowledge,
no models exist that characterize traffic in a DDC.

We thus start by devising a methodology that extends
our experimental setup to generate an application-driven
input traffic workload (§4.1), then describe how we use this
traffic model to evaluate the impact of queuing delay (§4.2).
Finally, we present our results on: (i) how existing transport
designs perform under DDC traffic workloads (§4.3), and (ii)
how existing transport designs impact end-to-end application
performance (§4.4). To our knowledge, our results represent

Hadoop
Wordcount

Hadoop
Sort

Graphlab
CF

Memcached
YCSB

Spark
Wordcount

Spark
Sort

TimelyDataflow
PageRank

SparkSQL
BDB

0

1

2

3

4

5
S
lo
w
d
o
w
n

pFabric pHost Fastpass DCTCP TCP

Figure 7: The performance of the five protocols for the case of
100Gbps access link capacity. The results for 40Gbps access
links lead to similar conclusions. See §4.3 for discussion on
these results.

the first evaluation of transport protocols for DDC.

4.1 Methodology: DDC Traffic Workloads

Using our experimental setup from §3.1, we collect a
remote memory access trace from our instrumentation
tool as described in §3.1, a network access trace using
tcpdump [25], and a disk access trace using blktrace.

We translate the accesses from the above traces to network
flows in our simulated disaggregated cluster by splitting each
node into one compute, one memory, and one disk blade and
assigning memory blades to virtual nodes.

All memory and disk accesses captured above are asso-
ciated with a specific address in the corresponding CPU’s
global virtual address space. We assume this address space is
uniformly partitioned across all memory and disk blades re-
flecting our assumption of distributed data placement (§2.2).

One subtlety remains. Consider the disk accesses at a
server A in the original cluster: one might view all these disk
accesses as corresponding to a flow between the compute
and disk blades corresponding to A, but in reality A’s CPU
may have issued some of these disk accesses in response to a
request from a remote server B (e.g., due to a shuffle request).
In the disaggregated cluster, this access should be treated as a
network flow between B’s compute blade and A’s disk blade.

To correctly attribute accesses to the CPU that originates
the request, we match network and disk traces across the
cluster – e.g., matching the network traffic between B and
A to the disk traffic at A – using a heuristic based on both
the timestamps and volume of data transferred. If a locally
captured memory or disk access request matches a local
flow in our tcpdump traces, then it is assumed to be part
of a remote read and is attributed to the remote endpoint
of the network flow. Otherwise, the memory/disk access is
assumed to have originated from the local CPU.

4.2 Methodology: Queuing delay
We evaluate the use of existing network designs for DDC
in two steps. First, we evaluate how existing network designs
fare under DDC traffic workloads. For this, we consider a
suite of state-of-the-art network designs and use simulation
to evaluate their network-layer performance – measured in
terms of flow completion time (FCT) – under the traffic
workloads we generate as above. We then return to actual
execution of our applications (Table 2) and once again
emulate disaggregation by injecting latencies for page misses.
However, now we inject the flow completion times obtained
from our best-performing network design (as opposed to
the constant latencies from §3). This last step effectively
“closes the loop”, allowing us to evaluate the impact of
disaggregation on application-level performance for realistic
network designs and conditions.

Simulation Setup. We use the same simulation setup as
prior work on datacenter transports [29,30,36]. We simulate
a topology with 9 racks (with 144 total endpoints) and a full
bisection bandwidth Clos topology with 36KB buffers per
port; our two changes from prior work are to use 40Gbps
or 100Gbps access links (as per §3), and setting propagation
and switching delays as discussed in §3.3 (Table 4 with
RDMA and NIC integration). We map the 5 EC2-node
cluster into a disaggregated cluster with 15 blades: 5 each
of compute, memory and disk. Then, we extract the flow
size and inter-arrival time distribution for each endpoint
pair in the 15 blades disaggregated cluster, and generate
traffic using the distributions. Finally, we embed the multiple
disaggregated clusters into the 144-endpoint datacenter with
both rack-scale and datacenter-scale disaggregation, where
communicating nodes are constrained to be within a rack
and unconstrained, respectively.

We evaluate five protocols; in each case, we set protocol-
specific parameters following the default settings but adapted
to our bandwidth-delay product as recommended.

1. TCP, with an initial congestion window of 2.
2. DCTCP, which leverages ECN for enhanced perfor-

mance in datacenter contexts.
3. pFabric, approximates shortest-job-first scheduling in a

network context using switch support to prioritize flows
with a smaller remaining flow size [30]. We set pFabric
to have an initial congestion window of 12 packets and a
retransmission timeout of 45µs.

4. pHost, emulates pFabric’s behavior but using only
scheduling at the end hosts [36] and hence allows the
use of commodity switches. We set pHost to have a free
token limit of 8 packets and a retransmission timeout of
9.5µs as recommended in [36].

5. Fastpass, introduces a centralized scheduler that sched-
ules every packet. We implement Fastpass’s [54] schedul-
ing algorithm in our simulator as described in [36] and
optimistically assume that the scheduler’s decision logic
itself incurs no overhead (i.e., takes zero time) and hence
we only consider the latency and bandwidth overhead
of contacting the central scheduler. We set the Fastpass
epoch size to be 8 packets.

4.3 Network-level performance
We evaluate the performance of our candidate transport
protocols in terms of their mean slowdown [30], which is
computed as follows. The slowdown for a flow is computed
by dividing the flow completion time achieved in simulation
by the time that the flow would take to complete if it were
alone in the network. The mean slowdown is then computed
by averaging the slowdown over all flows. Figure 7 plots
the mean slowdown for our five candidate protocols, using
100Gbps links (all other parameters are as in §4.2).

Results. We make the following observations. First, while the
relative ordering in mean slowdown for the different proto-
cols is consistent with prior results [36], their absolute values
are higher than reported in their original papers; e.g. pFabric
and pHost both report close-to-optimal slowdowns with val-
ues close to 1.0 [30,36]. On closer examination, we found that
the higher slowdowns with disaggregation are a consequence
of the differences in our traffic workloads (both earlier studies
used heavy-tailed traffic workloads based on measurement
studies from existing datacenters). In our DDC workload,
reflecting the application-driven nature of our workload, we
observe many flow arrivals that appear very close in time
(only observable on sub-10s of microsecond timescales), lead-
ing to high slowdowns for these flows. This effect is strongest
in the case of the Wordcount application, which is why it
suffers the highest slowdowns. We observed similar results in
our simulation of rack-scale disaggregation (graph omitted).

4.4 Application-level performance
We now use the pFabric FCTs obtained from the above
simulations as the memory access times in our emulation
methodology from §3.

We measure the degradation in application performance
that results from injecting remote memory access times
drawn from the FCTs that pFabric achieves with 40Gbps
links and with 100Gbps links, in each case considering both
datacenter-wide and rack-scale disaggregation. As in §3, we
measure performance degradation compared to the baseline
of performance without disaggregation (i.e., injecting zero
latency).

In all cases, we find that the inclusion of queuing delay

Hadoop
Wordcount

Hadoop
Sort

Graphlab
CF

Memcached
YCSB

Spark
Wordcount

Spark
Sort

Spark SQL
BDB

Timely D.
Pagerank

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

12.0%

14.0%

P
e
rf

o
rm

a
n
c
e
 D

e
g
ra

d
a
ti

o
n

Datacenter Scale

Rack Scale

Figure 8: Application layer slowdown for each of the four
applications at rack-scale and datacenter scale after injecting
pFabric’s FCT with 100Gbps link.

does have a non-trivial impact on performance degradation at
40 Gbps – typically increasing the performance degradation
relative to the case of zero-queuing delay by between 2-3x,
with an average performance degradation of 14% with
datacenter-scale disaggregation and 11% with rack-scale
disaggregation.

With 100Gbps links, we see (in Figure 8) that the
performance degradation ranges between 1-8.5% on average
with datacenter scale disaggregation, and containment to a
rack lowers the degradation to between 0.4-3.5% on average.
This leads us to conclude that 100Gbps links are both
required and sufficient to contain the performance impact
of queuing delay.

5 Future Directions
So far, we used emulation and simulation to evaluate the
minimum network requirements for disaggregation. This
opens two directions for future work: (1) demonstrating an
end-to-end system implementation of remote memory access
that meets our latency targets, and (2) investigating program-
ming models that actively exploit disaggregation to improve
performance. We present early results investigating the above
with the intent of demonstrating the potential for realizing
positive results to the above questions: each topic merits an
in-depth exploration that is out of scope for this paper.

5.1 Implementing remote memory access
We previously identified an end-to-end latency target of 3-
5µs for DDC that we argued could be met with RDMA. The
(promising) RDMA latencies in §4 are as reported by native
RDMA-based applications. We were curious about the fea-
sibility of realizing these latencies if we were to retain our ar-
chitecture from the previous section in which remote memory
is accessed as a special swap device as this would provide a
simple and transparent approach to utilizing remote memory.

We thus built a kernel space RDMA block device driver
which serves as a swap device; i.e., the local CPU can now

Min Avg Median 99.5 Pcntl Max
3394 3492 3438 4549 12254

Table 5: RDMA block device request latency(ns)

swap to remote memory instead of disk. We implemented
the block device driver on a machine with a 3 GHz CPU and
a Mellanox 4xFDR Infiniband card providing 56 Gbps band-
width. We test the block device throughput using dd with
direct IO, and measure the request latency by instrumenting
the driver code. The end-to-end latency of our approach in-
cludes the RDMA request latency and the latency introduced
by the kernel swap itself. We focus on each in turn.

RDMA request latency. A few optimizations were neces-
sary to improve RDMA performance in our context. First, we
batch block requests sent to the RDMA NIC and the driver
waits for all the requests to return before notifying the upper
layer: this gave a block device throughput of only 0.8GB/s
and latency around 4-16us. Next, we merge requests with con-
tiguous addresses into a single large request: this improved
throughput to 2.6GB/s (a 3x improvement). Finally, we
allow asynchronous RDMA requests: we created a data struc-
ture to keep track of outgoing requests and notify the upper
layer immediately for each completed request; this improves
throughput to 3.3GB/s which is as high as a local RamFS, and
reduces the request latency to 3-4us (Table 5). This latency is
within 2x of latencies reported by native RDMA applications
which we view as encouraging given the simplicity of the
design and that additional optimizations are likely possible.

Swap latency. We calculated the software overhead of
swapping on a commodity desktop running Linux 3.13 by
simultaneously measuring the times spent in the page fault
handler and accessing disk. We found that convenient mea-
surement tools such as ftrace and printk introduce
unacceptable overhead for our purposes. Thus, we wrap both
the body of the __do_page_fault function and the call
to the swapin_readahead function (which performs a
swap from disk) in ktime_get calls. We then pack the
result of the measurement for the swapin_readahead
function into the unused upper 16-bits of the return value
of its caller, do_swap_page, which propagates the value
up to __do_page_fault.

Once we have measured the body of __do_page_fault,
we record both the latency of the whole __do_page_fault
routine (25.47µs), as well as the time spent in
swapin_readahead (23.01µs). We subtract these
and average to find that the software overhead of swapping
is 2.46µs. This number is a lower-bound on the software
overhead of the handler, because we assume that all of
swapin_readahead is a “disk access”.

Pagerank
UK

Conn. Comp.
UK

Pagerank
Friendster

Conn. Comp.
Friendster

0

200

400

600

800

1000

1200

R
u
n
ti

m
e
(s

)

COST-DDC, Single Thread, 2GB Local RAM

COST-Server Centric, Single Thread, 8GB Local RAM

GraphX-Server Centric, 128 Threads

Figure 9: Running COST in a simulated DDC. COST-DDC
is 1.48 to 2.05 faster than GraphX-Server Centric except for
one case. We use two datasets in our evaluation, UK-2007-05
(105m nodes, 3.7b edges), and Friendster (65m nodes, 1.8b
edges)

In combination with the above RDMA latencies, these
early numbers suggest that a simple system design for
low-latency access to remote memory could be realized.

5.2 Improved performance via disaggrega-
tion

In the longer term, one might expect to re-architect
applications to actively exploit disaggregation for improved
performance. One promising direction is for applications to
exploit the availability of low-latency access to large pools
of remote memory [46]. One approach to doing so is based
on extending the line of argument in the COST work [48]
by using remote memory to avoid parallelization overheads.
COST is a single machine graph engine that outperforms
distributed graph engines like GraphX when the graph fits
into main memory. The RDMA swap device enables COST
to use “infinite” remote memory when the graph is too large.
We estimate the potential benefits of this approach with
the following experiment. First, to model an application
running in a DDC, we set up a virtual machine with 4 cores,
2GB of local memory, and access to an “infinitely” large
remote memory pool by swapping to an RDMA-backed
block device. Next, we consider two scenarios that represent
server-centric architecture. One is a server with 4 cores and
8GB of local memory (25% larger than the DDC case as in
previous sections) and an “infinitely” large local SSD swap –
this represents the COST baseline in a server-centric context.
Second, we evaluate GraphX using a 16-node m2.4xlarge
cluster on EC2 – this represents the scale-out approach in
current server-centric architecture. We run Pagerank and
Connected Components using COST, a single-thread graph
compute engine over three large graph datasets. COST
mmaps the input file, so we store the input files on another
RDMA-backed block device. Figure 9 shows the application

runtime of COST-DDC, COST-SSD and GraphX-Server
Centric. In all but one case, COST-DDC is 1.48 to 2.05
times faster than the GraphX (server-centric) scenario and
slightly better than the server-centric COST scenario (the
improvement over the latter grows with increasing data set
size). Performance is worse for Pagerank on the UK-2007-5
dataset, consistent with the results in [48] because the graph
in this case is more easily partitioned.

Finally, another promising direction for improving
performance is through better resource utilization. As argued
in [40,46], CPU-to-memory utilization for tasks in today’s
datacenters varies by three orders of magnitude across tasks;
by “bin packing” on a much larger scale, DDC should achieve
more efficient statistical multiplexing, and hence higher
resource utilization and improved job completion times. We
leave an exploration of this direction to future work.

6 Related Work and Discussion

As mentioned earlier, there are many recent and ongoing
efforts to prototype disaggregated hardware. We discussed
the salient features of these efforts inline throughout this
paper and hence we only briefly elaborate on them here.

Lim et al. [46, 47] discuss the trend of growing peak
compute-to-memory ratio, warning of the “memory capacity
wall” and prototype a disaggregated memory blade. Their
results demonstrate that memory disaggregation is feasible
and can even provide a 10x performance improvement in
memory constrained environments.

Sudan et al. [58] use an ASIC based interconnect fabric
to build a virtualized I/O system for better resource sharing.
However, these interconnects are designed for their specific
context; the authors neither discuss network support for
disaggregation more broadly nor consider the possibility of
leveraging known datacenter network technologies to enable
disaggregation.

FireBox [31] proposes a holistic architecture redesign
of datacenter racks to include 1Tbps silicon photonic
links, high-radix switches, remote nonvolatile memory, and
System-on-Chips (SoCs). Theia [61] proposes a new network
topology that interconnects SoCs at high density. Huawei’s
DC3.0 (NUWA) system uses a proprietary PCIe-based
interconnect. R2C2 [34] proposes new topologies, routing
and congestion control designs for rack-scale disaggregation.
None of these efforts evaluate network requirements based
on existing workloads as we do, nor do they evaluate the
effectiveness of existing network designs in supporting
disaggregation or the possibility of disaggregating at scale.

In an early position paper, Han et al. [40] measure – as
we do – the impact of remote memory access latency on
application-level performance within a single machine. Our

work extends this understanding to a larger set of workloads
and concludes with more stringent requirements on latency
and bandwidth than Han et al. do, due to our consideration
of Class B applications. In addition, we use simulation
and emulation to study the impact of queueing delay and
transport designs which further raises the bar on our target
network performance.

Multiple recent efforts [35,42,45,52] aim to reduce the
latency in networked applications through techniques that
bypass the kernel networking stack, and so forth. Similarly,
efforts toward NIC integration by CPU architects [33]
promise to enable even further latency-saving optimizations.
As we note in §3.3, such efforts are crucial enablers in
meeting our latency targets.

Distributed Shared Memory (DSM) [32,44,50] systems
create a shared address space and allow remote memory to
be accessed among different endpoints. While this is a simple
programming abstraction, DSM incurs high synchronization
overhead. Our work simplifies the design by using remote
memory only for paging, which removes synchronization
between the endpoints.

Based on our knowledge of existing designs and proto-
types [12,13,31,46,47], we assume partial memory disag-
gregation and limit the cache coherence domain to one CPU.
However, future designs may relax these assumptions, caus-
ing more remote memory access traffic and cache coherence
traffic. In these designs, specialized network hardware may
become necessary.

7 Conclusion

This paper is a preliminary study; we have identified
numerous directions for future work before disaggregation
is deployable. Most important among these are the adoption
of low-latency network software and hardware at endpoints,
the design and implementation of a “disaggregation-aware”
scheduler, and the creation of new programming models
which exploit a disaggregated architecture. We believe that
quantified, workload-driven studies such as that presented
in this paper can serve to inform these ongoing and future
efforts to build DDC systems.

Acknowledgements

We thank our shepherd Orran Krieger and the anonymous
reviewers for their excellent feedback. We thank Krste
Asanović for clarification on FireBox’s technical specs.
We thank Kostadin Ilov for his technical support on our
experiments. This work is supported by Intel, NSF Grant
1420064 and Grant 1216073.

References
[1] 100G CLR4 White Paper. http://www.
intel.com/content/www/us/en/research/
intel-labs-clr4-white-paper.html.

[2] A look at The Machine. https://lwn.net/
Articles/655437/.

[3] Amazon VPC. https://aws.amazon.com/vpc/.

[4] Bandwidth: a memory bandwidth benchmark. http:
//zsmith.co/bandwidth.html.

[5] Bandwidth Growth and The Next Speed of Ethernet.
http://goo.gl/C5lovt.

[6] Berkeley Big Data Benchmark. https://amplab.
cs.berkeley.edu/benchmark/.

[7] Big Data System research: Trends and Challenges.
http://goo.gl/38qr1O.

[8] Facebook Disaggregated Rack. http://goo.gl/
6h2Ut.

[9] Friendster Social Network. https://snap.
stanford.edu/data/com-Friendster.html.

[10] Graphics Processing Unit. http://www.nvidia.
com/object/what-is-gpu-computing.html.

[11] Here’s How Many Cores Intel Corporation’s Future
14-Nanometer Server Processors Will Have. http:
//goo.gl/y2nWOR.

[12] High Throughput Computing Data Center Ar-
chitecture. http://www.huawei.com/ilink/en/
download/HW_349607.

[13] HP The Machine. http://www.hpl.hp.com/
research/systems-research/themachine/.

[14] Huawei NUWA. http://nuwabox.com.

[15] InfiniBand. http://www.infinibandta.org/
content/pages.php?pg=about_us_infiniband.

[16] Intel Ethernet Converged Network Adapter
XL710 10/40 GbE. http://www.intel.com/
content/www/us/en/network-adapters/
converged-network-adapters/
ethernet-xl710-brief.html.

[17] Intel Omnipath. http://www.
intel.com/content/www/us/en/
high-performance-computing-fabrics/
omni-path-architecture-fabric-overview.
html.

[18] Intel Performance Counter Monitor. https:
//software.intel.com/en-us/articles/
intel-performance-counter-monitor.

[19] Intel RSA. http://www.intel.com/content/
www/us/en/architecture-and-technology/
rsa-demo-x264.html.

[20] Memcached - A Distributed Memory Object Caching
System. http://memcached.org.

[21] Memristor. http://www.memristor.
org/reference/research/13/
what-are-memristors.

[22] Netflix Rating Trace. http://www.select.cs.
cmu.edu/code/graphlab/datasets/.

[23] Non-Volatile Random Access Memory. https:
//en.wikipedia.org/wiki/Non-volatile_
random-access_memory.

[24] SeaMicro Technology Overview. http:
//seamicro.com/sites/default/files/SM_
TO01_64_v2.5.pdf.

[25] "tcpdump". http://www.tcpdump.org.

[26] Timely Dataflow. https://github.com/
frankmcsherry/timely-dataflow.

[27] Wikipedia Dump. https://dumps.wikimedia.
org/.

[28] M. Al-Fares, A. Loukissas, and A. Vahdat. A Scalable,
Commodity Data Center Network Architecture.
SIGCOMM 2008.

[29] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye,
P. Patel, S. Sengupta, and M. Sridharan. Data Center
TCP (DCTCP). SIGCOMM 2010.

[30] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKe-
own, B. Prabhakar, and S. Shenker. pFabric: Minimal
Near-optimal Datacenter Transport. SIGCOMM 2013.

[31] K. Asanović. FireBox: A Hardware Building Block
for 2020 Warehouse-Scale Computers. FAST 2014.

[32] J. K. Bennett, J. B. Carter, and W. Zwaenepoel. Munin:
Distributed shared memory based on type-specific
memory coherence. PPOPP 1990.

[33] N. L. Binkert, A. G. Saidi, and S. K. Reinhardt.
Integrated Network Interfaces for High-bandwidth
TCP/IP. ASPLOS 2006.

[34] P. Costa, H. Ballani, K. Razavi, and I. Kash. R2C2: A
Network Stack for Rack-scale Computers. SIGCOMM
2015.

[35] A. Dragojević, D. Narayanan, O. Hodson, and
M. Castro. FaRM: Fast Remote Memory. NSDI 2014.

[36] P. X. Gao, A. Narayan, G. Kumar, R. Agarwal,
S. Ratnasamy, and S. Shenker. pHost: Distributed
Near-optimal Datacenter Transport Over Commodity
Network Fabric. CoNEXT 2015.

[37] A. Greenberg. SDN for the Cloud. SIGCOMM 2015.

[38] A. Greenberg, J. Hamilton, D. Maltz, and P. Patel. The
Cost of a Cloud: Research Problems in Data Center
Networks. ACM SIGCOMM CCR 2009.

[39] A. Greenberg, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. Maltz, P. Patel, and S. Sengupta. VL2: A Scalable
and Flexible Data Center Network. SIGCOMM 2009.

[40] S. Han, N. Egi, A. Panda, S. Ratnasamy, G. Shi, and
S. Shenker. Network Support for Resource Disaggre-
gation in Next-generation Datacenters. HotNets 2013.

[41] Intel LAN Access Division. An Introduction to
SR-IOV Technology. http://goo.gl/m7jP3.

[42] A. Kalia, M. Kaminsky, and D. G. Andersen.
Using RDMA Efficiently for Key-Value Services.
SIGCOMM 2014.

[43] S. Kumar. Petabit Switch Fabric Design. Master’s
thesis, EECS Department, University of California,
Berkeley, 2015.

[44] K. Li and P. Hudak. Memory coherence in shared
virtual memory systems. TOCS 1989.

[45] H. Lim, D. Han, D. G. Andersen, and M. Kaminsky.
MICA: A Holistic Approach to Fast In-memory
Key-Value Storage. NSDI 2014.

[46] K. Lim, J. Chang, T. Mudge, P. Ranganathan, S. K.
Reinhardt, and T. F. Wenisch. Disaggregated Memory
for Expansion and Sharing in Blade Servers. ISCA
2009.

[47] K. Lim, Y. Turner, J. R. Santos, A. Auyoung, J. Chang,
P. Ranganathan, and T. F. Wenisch. System-level
Implications of Disaggregated Memory. HPCA 2012.

[48] F. McSherry, M. Isard, and D. G. Murray. Scalability!
But at What Cost? HotOS 2015.

[49] D. G. Murray, F. McSherry, R. Isaacs, M. Isard,
P. Barham, and M. Abadi. Naiad: A Timely Dataflow
System. SOSP 2013.

[50] J. Nelson, B. Holt, B. Myers, P. Briggs, L. Ceze,
S. Kahan, and M. Oskin. Latency-tolerant Software
Distributed Shared Memory. USENIX ATC 2015.

[51] S. Novakovic, A. Daglis, E. Bugnion, B. Falsafi, and
B. Grot. Scale-out NUMA. ASPLOS 2014.

[52] J. Ousterhout, A. Gopalan, A. Gupta, A. Kejriwal,
C. Lee, B. Montazeri, D. Ongaro, S. J. Park, H. Qin,
M. Rosenblum, S. Rumble, R. Stutsman, and S. Yang.
The RAMCloud Storage System. TOCS 2015.

[53] K. Ousterhout, R. Rasti, S. Ratnasamy, S. Shenker, and
B.-G. Chun. Making sense of performance in data
analytics frameworks. NSDI 2015.

[54] J. Perry, A. Ousterhout, H. Balakrishnan, D. Shah,
and H. Fugal. Fastpass: A Centralized “Zero-Queue”
Datacenter Network. SIGCOMM 2014.

[55] P. S. Rao and G. Porter. Is Memory Disaggregation
Feasible?: A Case Study with Spark SQL. ANCS 2016.

[56] L. Rizzo. netmap: A Novel Framework for Fast Packet
I/O. USENIX ATC 2012.

[57] S. M. Rumble, D. Ongaro, R. Stutsman, M. Rosenblum,
and J. K. Ousterhout. Its Time for Low Latency.
HotOS 2011.

[58] K. Sudan, S. Balakrishnan, S. Lie, M. Xu, D. Mallick,
G. Lauterbach, and R. Balasubramonian. A Novel
System Architecture for Web Scale Applications Using
Lightweight CPUs and Virtualized I/O. HPCA 2013.

[59] C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti,
M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R.
Avizienis, S. Lin, et al. Single-chip Microprocessor that
Communicates Directly Using Light. Nature 2015.

[60] G. Vasiliadis, M. Polychronakis, S. Antonatos, E. P.
Markatos, and S. Ioannidis. Regular Expression Match-
ing on Graphics Hardware for Intrusion Detection.
RAID 2009.

[61] M. Walraed-Sullivan, J. Padhye, and D. A. Maltz.
Theia: Simple and Cheap Networking for Ultra-Dense
Data Centers. HotNets-XIII.

[62] W. A. Wulf and S. A. McKee. Hitting the Memory
Wall: Implications of the Obvious. SIGARCH Comput.
Archit. News, March 1995.

