
Measuring The Energy Impact of Security Protocols

Akshay Narayan Michael Chen

CS261N, Vern Paxson

University of California, Berkeley

Abstract
In recent years, mobile devices have become in-
creasingly similar to traditional desktop computers,
and the use of common security protocols on such
devices is now prevalent. Unlike the traditional
computers for which common security protocols
were designed, however, mobile devices are con-
strained by battery life. Unfortunately, the effects of
security protocols on mobile device battery life are
not well understood, especially on modern mobile
operating systems.

In this paper we outline a methodology for mea-
suring the energy cost of security protocols on
mobile devices. We further present initial findings
from our application of this methodology that TLS
can cause a 39% overhead, Tor 36%, VPNs 29%,
proximity-based authentication 2%, and mobile an-
tivirus 6%. Based on our findings we argue that the
network security community should incorporate en-
ergy concerns into the design of mobile security
mechanisms.

1 Introduction

Recent years have brought about a revolution in
mobile devices. Whereas in the past mobile devices
were categorized as embedded systems, today
mobile devices are split into two categories: the
Internet of Things (IoT) and mobile computing.
The Internet of Things is the spiritual successor to
the embedded systems space, inheriting the same
concerns regarding limited compute power, min-
imal operating systems, and constrained battery life.

Meanwhile, as Figure 1 demonstrates, mobile
computers use the Internet in ways similar to tradi-
tional personal computers but are still constrained
by battery life.1 As a result, security protocols
(such as TLS [1] and Tor [2]) on mobile computing
devices are identical to those used in traditional
computers. Unfortunately, such protocols were built

1Laptop computers are also constrained by battery life, but
not nearly to the same extent.

Energy Capacity

Processing Power

IoT

Laptops

Mobile Computing

Spacecraft

Figure 1: Overview of the battery-powered device
space. We focus on the lower right quadrant.

from a functional perspective and thus not designed
with energy constraints in mind. Therefore, the
use of such protocols creates an energy cost that
has heretofore been under-appreciated in network
security literature.

Users who observe this cost may conclude that
the benefits of using security protocols on mobile
devices are not worth the increased energy use.
Therefore, the energy cost of security could be an
obstacle to the widespread deployment of security
measures. We therefore argue that the tradeoffs be-
tween battery life and the use of security protocols
should be better understood. Importantly, we do
not perform an exhaustive analysis of the effects of
security measures on battery life, but rather seek to
understand whether the issue is significant.

To further this goal, we make two contributions:

(1) We outline our methodology for measuring the
energy cost of a security protocol on a mobile
device. We measure energy costs from a user-
level perspective, which breaks from the meth-
ods used in prior work.

(2) We present our initial findings from applying

1



our methodology to measure the energy cost
of commonly used security measures. We mea-
sured TLS, Tor, VPNs, mobile antivirus appli-
cations, and proximity based device authenti-
cation. To our knowledge, no prior analysis of
the energy costs of these protocols on modern
mobile devices exists.

The rest of this paper is organized as follows.
Section 2 discusses prior work in the energy anal-
ysis with respect to security. Section 3 introduces
our methodology and evaluates its merits. Section 4
describes our findings from evaluating common se-
curity protocols. Section 5 summarizes our findings
and suggests directions for future work.

2 Related Work

2.1 Wireless Sensor Networks

The initial work investigating the energy impact of
security came from the wireless sensor networks
(WSN) community, the spiritual predecessor
of the Internet of Things movement. WSN de-
vices are small, have low-power processors and
limited battery life [3]. WSN security literature fo-
cused [3, 4, 5, 6, 7] on designing security protocols
in a resource constrained environment and did not
focus specifically on the energy costs of security.

Nevertheless, some wireless sensor network se-
curity literature is relevant to our interests. Wan-
der et al. [8] found that using elliptic-curve cryp-
tography could make public-key cryptography vi-
able from an energy perpective even on constrained
CPUs. Fonseca et al. [9] developed a precise yet
lightweight instrumentation system to measure en-
ergy usage in embedded systems by modifying de-
vice drivers to track changes in component energy
states. Finally, Karagiannis et al. [10] compared the
results of estimating WSN energy usage using sim-
ulations to the measured power draw of embedded
devices; they found that the results of simulations
deviate slightly from measured power usage.

2.1.1 Energy-Based Denial of Service Attacks

Further work pertinent to energy concerns in WSNs
and the Internet of Things involved what Stajano
and Anderson [11] dubbed sleep deprivation torture
attacks, a type of denial of service attack in which an
attacker forces a device to remain in a high-power
state. Martin et al. [12] found that this style of at-
tack could reduce battery life in PDAs by a factor

of 30 to 280. Brownfield et al. [13] developed a
link-layer protocol that resists sleep deprivation at-
tacks, increasing WSN node lifetime when under at-
tack from 6 days under 802.11 to 478 days. Racic et
al. [14] found that a vulnerability in MMS delivery
allowed attacks to drain mobile phone batteries 22
times faster.

2.2 Mobile Computing

2.2.1 Power Management

To help maximize battery life in mobile devices,
Mittal et al. [15] developed a tool to help applica-
tion developers estimate the energy consumption of
their applications, noting that poorly written appli-
cations can cause a 30 percent overhead in battery
use. Jinal et al. [16] and Vekris et al. [17] sought to
use a runtime system and use static analysis to ver-
ify the absence of locks that prevent the device from
entering a low-power state. Ding et al. [18] studied
the impact of wireless signal strength on battery us-
age and found that a poor WiFi signal cost 810.5%
more energy, while a poor 3G signal cost 52% more
energy. Finally, Caroll and Heiser [19] measured a
smartphone’s power consumption by measuring the
voltage drop across the smartphone’s components
and found that the screen and wireless radios were
the most energy-intensive.

2.2.2 Mobile Malware

Malware on mobile devices has been a concern
since before the advent of modern smartphones and
tablets [20, 21, 22, 23, 24]. Kim et al. [25] suggested
that device power monitoring could identify mal-
ware by generating a “power signature” of known
malware and comparing it to running applications,
but Hoffmann et al. [26] argued that high variance
in per-process power consumption limits this ap-
proach. This result suggests that measuring the en-
ergy overhead at the device process level would
yield noisy results.

2.2.3 TLS

Potlapally et al. [27] were the first to specifically
study the energy use of SSL/TLS and found that the
SSL handshake dominated connection energy us-
age for short connections, while symmetric cipher
operations dominate energy usage for longer con-
nections. This study predates the advent of mod-
ern smartphones. Moreover, we discuss in section 3
that energy measurements by measuring a device’s

2



power draw from a connected power cable are too
noisy.

3 Methodology

Measuring battery use is inherently tricky due to
the number of factors involved in power usage. In
our methodology, instead of trying to decouple the
systems involved in power usage, we hope to ana-
lyze the end-to-end energy impact of each security
protocol. Therefore, we developed an Android ap-
plication that uses the common security protocols
HTTPS, Tor, and VPNs and measures the resulting
battery drain using the Android API [28].

3.1 Android Application

We implemented our application using version 21
of the Android API in 928 lines of Java code.

Each measurement utilizes the AsyncTask li-
brary in Android, which executes tasks from a pool
of background threads.2 In each AsyncTask, we run
the test suite of choice in a loop to emulate possible
user activity and reduce the effect of noise on our
measurements. To log battery usage, we register a
BroadcastReceiver with the operating system to
receive notifications for changes in battery level. In
order to reliably log at any point in time, we request
a WakeLock from the Android OS; this allows the
application to prevent the CPU from entering a low-
power state.

3.2 Accuracy of Battery Measurement

The battery measurement API in Android returns
measurements in integer precision representing the
percentage of battery remaining. This measurement
has two limitations:

• Battery Health The amount of energy a given
battery can store degrades over time. There-
fore, one percentage point of battery is not
comparable across devices, since different de-
vices have experienced different battery usage
patterns. Therefore, when running tests on dif-
ferent physical devices, we established sepa-
rate baseline measurements so that our com-
parisons remained accurate.

2Android does not allow networking in a primary thread, as
the OS dedicates these threads to user interface to avoid lag.

Figure 2: As the battery drains, battery readings re-
turn results that decrease linearly. r2 = 0.9996

• Precision The amount of time a typical net-
work flow is active is smaller than the amount
of time taken to drain one percent of battery
life.3 Therefore, in order to measure the energy
cost of a protocol, we must measure the over-
all energy drain of multiple serial connections.
Unfortunately, this means our measurements
must be in aggregate, and we cannot analyze
per-connection data to determine, for example,
the variance of energy use between connec-
tions. This variance could be significant due to
ambient temperature, wireless signal strength,
and packet loss rate.

Notwithstanding these concerns, we have deter-
mined that our measurement is an accurate mea-
sure of remaining battery life. We demonstrate this
by idling the device and measuring remaining bat-
tery life at regular intervals. As shown in Figure 2,
the observed battery drain is linear. This means that
the loss of a certain percentage of battery life cor-
responds to the same amount of energy use as the
same percentage of battery life at a different time.

3.2.1 Measurements Using a Power Cable

We attempted to measure energy use using the
method outlined by Potlapally et al. [27], but found
the results too noisy to be of value. We used a
Charger Doctor CPKT002 to measure our device’s
draw on its power cable while the device idled, idled
with its screen on, and performed HTTP GET re-
quests with the screen on. We measured the current

3This is not true for long-lived connections and on devices
with low battery capacity.

3



Figure 3: Readings over time of current draw on the
power cable.

Figure 4: Scatter plot of the precise measurements
on our newer Nexus 9 hardware.

drawn every 10 seconds over a period of 250 sec-
onds for each state. As seen in Figure 3, while there
is a difference between idling with screen on and
with screen off, any energy overhead from perform-
ing HTTP GET requests was lost to noise.

3.2.2 More Precise Measurements on Newer
Hardware

Power measurements can be more precise with
newer hardware and software (in our case a Nexus
9 running Android Lollipop). The Android API
specification [28] for accessing precise energy
readings states that the kernel measures the battery
to a resolution of 8nAh at a nominal voltage of 3.7
volts. Figure 4 shows that readings demonstrate the
same linear trend seen in the less precise measure-

ments given by the Nexus 7. The inner graph shows
how much more precise the new measurement is
— for every integer drop in percentage, there are
on average 15 finer grained measurements from the
precise API.

As seen on the left hand side of the graph, the
kernel reports inaccurate negative readings for
precise battery measurements.4 As we therefore
cannot rely on the accuracy of the instrumentation,
we do not present further results from our precise
instrumentation hardware and leave the precise
measurement of individual connections’ battery
cost to future work.

More broadly, the goal of analyzing the power ef-
ficiency of these security protocols is to represent
what a user would realistically observe when us-
ing these protocols. Therefore, while precise log-
ging gives insight to the low-level fluctuations and
dynamic range in connection power usage, our high-
level measurement of user energy usage using im-
precise APIs remain valid.

3.3 Assessing Energy Usage
In order to assess the power usage of security
protocols, we first establish a baseline for each
test which performs the same high-level task. For
example, we use HTTP as a baseline for HTTPS.
Because different security protocols target different
high-level tasks, we establish a different baseline
for each task. Establishing a baseline allows us to
control for variables which affect battery drain so
that the only independent variable is the use of a
given security protocol.

We use the following tests when gathering re-
sults.

• Direct Web Connections Issues a GET re-
quest for a certain website and reads the web-
site into memory. This simulates a typical
network-enabled application on Android.

• Page loads Rather than issue the GET request
manually, we issue an Intent to the operat-
ing system. Android resolves this Intent to
the default web browser (Google Chrome in
our case). This test simulates a user in a mo-
bile browser. We recorded the top 70 sites in

4Negative ampere-hours are illogical for batteries, so this
could be a mistake in the API documentation for Nexus device
battery readings.

4



Alexa’s [29] ranking to approximate real user
browsing activity.

• Downloads Our application issues Intents
for the operating system to download files from
specified URLs. We designed this test suite to
test antivirus suites that scan downloads.

• Idle A passive security mechanism (e.g., an-
tivirus) runs in the background while the de-
vice idles. The radios in the device are allowed
to drop to a low power state to emulate a user
not actively interacting with the device.

We execute these test suites in loops where we
set the iteration count to tradeoff between experi-
ment duration and overall battery drain. Too few it-
erations results in negligible battery drain, while too
many iterations causes experiments to take a long
time and limits the number of experiments we can
run. While experiments execute, the Android OS
notifies the application of changes in battery level
at regular intervals. The application logs these bat-
tery updates in persistent local storage.

3.4 Decoupling Dimensions

As described in section 4, we found that some
security mechanisms cause a latency overhead. It is
difficult to separate the causes of the increased en-
ergy use that results — did the experiment use more
energy simply because it took more time and caused
the device to use more CPU cycles, or did the exper-
iment require the use of higher power energy states?

We attempted to create a test that conducts the
same operations as the direct web connections test
but constrains the task to 3 seconds. If a connection
finished early, the CPU WakeLock remained active
but we allowed the thread to sleep. If the connection
did not complete in time, the application moved on
to the next iteration. This test would compare only
energy use and not duration.

Unfortunately, we experienced difficulty imple-
menting this test in Android. First, we attempted
to set timeouts within our AsyncTask and use
Thread.sleep() if a test finished early, but we
found that Android did not always return control of
the CPU after the specified sleep period.

We then created a TimerTask to periodically
launch our AsyncTasks, but Android ran these
tasks with some variance from the scheduled time,

which did not suit our needs for strict 3 second
windows.

We then used ScheduledExecutorService to
schedule launching our AsyncTask at a fixed
rate, but we found that calling the execute()
method on an AsyncTask only put our task into a
pool of threads used for AsyncTasks in general,
and Android could schedule our task for a later time.

We also looked at the AlarmManager API, but
this API does not provide an interface for setting a
precise repeating alarm.5

Overall, because Android requires forces network
operations to use background threads scheduled by
the operating system, we did not find an effective
way to force tasks to take a fixed amount of time.

4 Evaluation

After designing a methodology to conduct experi-
ments, we tested TLS, Tor, VPNs, mobile antivirus
software, and smartwatch authentication to analyze
their power efficiency. For each protocol, we picked
an appropriate test based on the user-level activity
the protocol secures. Throughout our results we ob-
served high variance between data points; more ex-
periments would give more insight into this vari-
ance. Our findings are therefore preliminary.

4.1 Hardware

We performed our experiments using two 2012
Nexus 7 Android tablets with Nvidia Tegra 3 SoC,
1 GB of RAM, and 4326 mAh batteries.

4.2 Server

To study the effect of page size and to help control
for server load, we deployed a custom server to the
web hosting service Heroku. The server supports re-
turning responses of arbitrary size over both HTTP
and HTTPS. We implemented the server in 37 lines
of Python code.

4.3 TLS

We used HTTPS connections to measure TLS
energy use and used HTTP as a reference baseline.

5AlarmManager provides a function setRepeating(), but
as of API version 19 this is an inexact alarm.

5



Figure 5: Energy usage and time connecting to
eecs.berkeley.edu

Figure 6: Energy usage and time for 1 MB down-
loads from Heroku

We ran our direct web connections test with 50,000
iterations and accessed eecs.berkeley.edu,
which supports both HTTP and HTTPS. We chose
this website both because it is hosted in Berkeley
(which reduced variances in network latency) and
because unlike other websites we investigated, the
HTTP version of eecs.berkeley.edu does not
redirect users to use HTTPS. The two versions of
the site are within 2 bytes of each other in size and
are identical other than markings identifying the
site as the HTTP or HTTPS version. As shown in
Figure 5, on average, HTTPS presents a 40% time
overhead and a 39% energy overhead over HTTP.

We also used our direct web connections test on
our Heroku server. We again used 50,000 iterations,
but fixed the page size at 1 MB. As seen in Figure 6,

Figure 7: Time used in each step to execute HTTP
GET for a 1 KB page from our Heroku server.

Figure 8: Runtimes for HTTP and HTTPS with
varying page size.

in this scenario HTTPS has a 25% time overhead
and a 50% power overhead compared to the eecs.
berkeley.edu experiment.

4.3.1 Decoupling Time

We notice that TLS incurred a significant time over-
head, but that the time overhead decreased when the
page size increased. We hypothesized that the time
overhead may be due to the TLS handshake. We
tested our hypothesis in two ways.

(1) We collected a Wireshark [30] trace of a single
HTTP and HTTPS connection to our Heroku
server for a 1 KB page and a 1 MB page. We
then divided the trace into connection phases
and compared the time each protocol spent

6



Figure 9: Energy usage and time of VPN test

in each phase. As Figure 7 shows, the only
difference between HTTP and HTTPS is the
TLS handshake time. Furthermore, this time
remains constant as page size increases, so
with the 1 MB connections the latency over-
head decreases.

(2) We ran HTTP and HTTPS connections from
Java on a desktop machine, which uses the
same TLS library as Android. We made re-
quests to our Heroku server for page sizes
ranging from 16 bytes to 16 MB. As observed
in Figure 8, we observe an overhead for TLS
when page sizes are small, but this overhead
diminishes as page sizes increase.

Both measurements confirm that the TLS hand-
shake causes a significant time overhead. This in
turn causes an energy overhead because the wireless
radio and screen must remain in high-power states
for longer periods of time.

4.4 VPN

We analyzed VPN with our direct web connections
test. To set up the VPN, we connected through the
UC Berkeley Library VPN using the Cisco Any-
connect application. This app redirected all network
traffic from the device through the VPN. We also
noted that running the additional VPN app could in-
cur some energy overhead, but this would also em-
ulate the local energy overhead of connecting to a
VPN. As seen in Figure 9, using a VPN connection
on average takes 14% longer and uses 29% more
battery.

Figure 10: Energy usage and time of Tor test

4.5 Tor

We analyzed Tor using our direct web connections
test. We used Orbot, the official Tor client for An-
droid which if installed on a rooted device will send
all network traffic on the device through Tor. As
seen in Figure 10, sending traffic through Tor on
average takes 96% longer and uses 36% more en-
ergy. The dramatic increase in duration is due to the
nature of Tor, which is known to have high latency
overhead for small webpages [2].

4.6 Proximity-based Authentication

In Android Lollipop, a user can register a smart-
watch as “trusted”, which means that Android will
allow the user to bypass the lock screen if the device
is nearby, where “nearby” is defined as within range
for a Bluetooth Low Energy connection. To test
this authentication protocol we used a Galaxy Gear
Live smartwatch running Android Wear.

We used our idle test to establish a baseline
with both WiFi and Bluetooth on, but no device
connected.6 We allowed both the baseline and
smartwatch experiment to drain at least 90% of
the battery, and then computed the average battery
drain per hour. The device drained 3.71% per
hour in the baseline and 3.79% per hour with the
smartwatch connected, an energy overhead of 2%.
Therefore, we conclude that the trusted device
implementation in Android is energy efficient.

6This allows the operating system to put the Bluetooth radio
to sleep, but would also represent a realistic comparison to the
energy cost of “check-in” packets keeping a radio awake.

7



Figure 11: Energy usage and time of Lookout, open-
ing pages in Chrome

4.7 Antivirus Suites

Because Android does not allow an application
access to arbitrary network traffic, running our web
connections test suite for antivirus suites would not
be appropriate. Therefore, we tested antivirus suites
by loading pages in Chrome for Android, which
allows antivirus applications to inspect traffic. We
opened the same set of sites as before in Chrome to
allow the antivirus suite to be active.

We first tested Lookout Mobile Security using
this test suite, and as seen in Figure 11, the energy
and time usage of having Lookout running in the
background is within the distribution of tests for
baseline. Because this test tended to be noisy due
to more components running (loading up a separate
browser application introduced unknown variables
into our experiment), we conclude that the energy
usage of Lookout in web browsing is negligible.

In addition, we also tested a set of downloads so
that the antivirus suite could scan the download for
safety. We obtained a dataset of downloads7, and
had our application issue download requests to the
operating system. We left Lookout running in the
background during this test so that it could scan the
downloads. As seen in Figure 12, downloading files
with Lookout running gave negligible differences in
time, but a 6% increase in battery use.

7We used https://github.com/ytisf/theZoo, which
is a dataset of malware designed for promoting malware re-
search.

Figure 12: Energy usage and time of Lookout,
downloading files

5 Conclusion

5.1 Discussion

One broad conclusion from our experimental results
is that security protocols cause increased energy use
insofar as they require the wireless radio and device
screen to remain in high-powered states for longer
periods of time. The latency overhead of security
protocols is in an unhappy valley; it is long enough
to be detrimental (especially since the wireless radio
must remain powered while awaiting packets), but
short enough that mitigative measures such as pow-
ering down the device screen while waiting for net-
work activity are unfortunately unlikely to be prac-
tical.

5.1.1 Connection Reuse

With TLS, we observed that the energy overhead of
a connection came from the TLS handshake. There-
fore, we suggest that connection reuse and TLS ses-
sion resumption should be highly effective means
of reducing the energy overhead of TLS, as this will
reduce the number of TLS handshakes required. To
this end, we suggest that devices could proxy traf-
fic through a single long-running TLS session. Such
solutions are already deployed to minimize device
bandwidth usage [31]; extending such systems to
TLS proxying would provide users with security at
low energy cost. While this solution would not pro-
vide end-to-end encryption as the proxy provider
could read users’ data, it would protect users from
wireless eavesdroppers.

8



5.1.2 Limitations

Our proposed methodology of accounting for the
energy costs of security protocols, as discussed
above, is accurate but not precise. We are unable to
measure the dynamic range in the energy use for a
single connection; instead, we focus on determining
aggregate energy use over a large number of con-
nections. Therefore, following our current method-
ology cannot determine whether security protocols
suffer from the “straggler problem” — that is, high
tail energy use. If the straggler problem affects a sig-
nificant number of connections, further work would
be required to determine the cause of straggler con-
nections and determine possible remedies.

5.2 Future Work

5.2.1 User Decisions

It remains unclear the extent to which users use their
device’s remaining battery life to make usage deci-
sions. If users restrict device or choose to not use
security protocols use when the battery is low, then
measures that seek to minimize the energy cost of
security protocols may convince users to use secu-
rity measures at all times. Alternately, if users make
decisions about whether to use security protocols
without considering energy use, then while it would
nevertheless be beneficial to maximize device bat-
tery life measures that specifically focus on mitigat-
ing the energy cost of security should be deprior-
itized. A user study is necessary to determine the
appropriate course of action and furthermore could
represent real-world scenarios better than our emu-
lated tasks.

5.2.2 Precision

Because our instrumentation had limited precision,
we were unable to measure energy use at a per-
connection granularity. As a result, our study does
not provide insight into the effects of system-level
activity or network state except over timespans in
the order of hours as these effects are averaged
out in the aggregate. Future work using more pre-
cise instrumentation could study energy effects at a
per-connection level to measure the variance in our
readings.

5.2.3 Other Protocols

We were only able to perform a measurement of a
limited set of security protocols in this work. Fur-

ther work is necessary to apply our methodology to
a broader set of security measures.

5.2.4 Future Protocol Design

Finally, we suggest that in the future security mea-
sures for mobile devices should be designed with
their energy costs in mind. It is clear that the energy
overhead can be significant, and energy efficient se-
curity implementations will benefit users.

References

[1] T. Dierks and E. Rescorla. The transport layer
security (tls) protocol version 1.2. RFC 5246,
IETF, August 2008. http://tools.ietf.
org/html/rfc5246.

[2] Roger Dingledine, Nick Mathewson, and Paul
Syverson. Tor: The second-generation onion
router. In In Proceedings Of The 13th Usenix
Security Symposium, 2004.

[3] Adrian Perrig, John Stankovic, and David
Wagner. Security in wireless sensor networks.
Commun. ACM, June 2004.

[4] D. Culler, D. Estrin, and M. Srivastava. Guest
editors’ introduction: Overview of sensor net-
works. Computer, Aug 2004.

[5] Chris Karlof, Naveen Sastry, and David Wag-
ner. Tinysec: A link layer security architecture
for wireless sensor networks. In Proceedings
of the 2nd International Conference on Em-
bedded Networked Sensor Systems, 2004.

[6] Wendi Rabiner Heinzelman, Joanna Kulik,
and Hari Balakrishnan. Adaptive protocols for
information dissemination in wireless sensor
networks. In Proceedings of the 5th Annual
ACM/IEEE International Conference on Mo-
bile Computing and Networking, 1999.

[7] Joseph Polastre, Jason Hill, and David Culler.
Versatile low power media access for wireless
sensor networks. In Proceedings of the 2nd
International Conference on Embedded Net-
worked Sensor Systems, 2004.

[8] A.S. Wander, N. Gura, H. Eberle, V. Gupta,
and S.C. Shantz. Energy analysis of public-
key cryptography for wireless sensor net-
works. In Pervasive Computing and Commu-
nications. Third IEEE International Confer-
ence on, March 2005.

9



[9] Rodrigo Fonseca, Prabal Dutta, Philip Levis,
and Ion Stoica. Quanto: Tracking energy in
networked embedded systems. In 8th USENIX
Symposium on Operating Systems Design and
Implementation, Dec 2008.

[10] A. Karagiannis, D. Vouyioukas, and P. Con-
stantinou. Energy consumption measurement
and analysis in wireless sensor networks for
biomedical applications. In Proceedings of
the 4th International Conference on Perva-
sive Technologies Related to Assistive Envi-
ronments, 2011.

[11] Frank Stajano and Ross J. Anderson. The res-
urrecting duckling: Security issues for ad-hoc
wireless networks. In Proceedings of the 7th
International Workshop on Security Protocols,
2000.

[12] T. Martin, M. Hsiao, Dong Sam Ha, and
J. Krishnaswami. Denial-of-service attacks on
battery-powered mobile computers. In Per-
vasive Computing and Communications. Pro-
ceedings of the Second IEEE Annual Confer-
ence on, March 2004.

[13] M. Brownfield, Yatharth Gupta, and N. Davis.
Wireless sensor network denial of sleep attack.
In Information Assurance Workshop. Proceed-
ings from the Sixth Annual IEEE SMC, June
2005.

[14] R. Racic, D. Ma, and Hao Chen. Exploit-
ing mms vulnerabilities to stealthily exhaust
mobile phone’s battery. In Securecomm and
Workshops, Aug 2006.

[15] Radhika Mittal, Aman Kansal, and Ranveer
Chandra. Empowering developers to estimate
app energy consumption. In Proceedings of
the 18th Annual International Conference on
Mobile Computing and Networking, 2012.

[16] Abhilash Jindal, Abhinav Pathak, Y. Charlie
Hu, and Samuel Midkiff. Hypnos: Under-
standing and treating sleep conflicts in smart-
phones. In Proceedings of the 8th ACM Euro-
pean Conference on Computer Systems, 2013.

[17] Panagiotis Vekris, Ranjit Jhala, Sorin Lerner,
and Yuvraj Agarwal. Towards verifying an-
droid apps for the absence of no-sleep energy
bugs. In Proceedings of the 2012 USENIX
Conference on Power-Aware Computing and
Systems, 2012.

[18] Ning Ding, Daniel Wagner, Xiaomeng Chen,
Abhinav Pathak, Y. Charlie Hu, and Andrew
Rice. Characterizing and modeling the impact
of wireless signal strength on smartphone bat-
tery drain. In Proceedings of the ACM SIG-
METRICS/International Conference on Mea-
surement and Modeling of Computer Systems,
2013.

[19] Aaron Carroll and Gernot Heiser. An analysis
of power consumption in a smartphone. In In
Proceedings of the 2010 USENIX conference
on USENIX annual technical conference.

[20] Neal Leavitt. Malicious code moves to mobile
devices. Computer, December 2000.

[21] Simon N. Foley and Robert Dumigan. Are
handheld viruses a significant threat? Com-
mun. ACM, January 2001.

[22] D. Dagon, T. Martin, and T. Starner. Mo-
bile phones as computing devices: the viruses
are coming! Pervasive Computing, IEEE, Oct
2004.

[23] N. Leavitt. Mobile phones: the next frontier
for hackers? Computer, April 2005.

[24] G. Lawton. Is it finally time to worry about
mobile malware? Computer, May 2008.

[25] Hahnsang Kim, Joshua Smith, and Kang G.
Shin. Detecting energy-greedy anomalies and
mobile malware variants. In Proceedings of
the 6th International Conference on Mobile
Systems, Applications, and Services, 2008.

[26] Johannes Hoffmann, Stephan Neumann, and
Thorsten Holz. Mobile malware detection
based on energy fingerprints - A dead end? In
Research in Attacks, Intrusions, and Defenses
(RAID) - 16th International Symposium Pro-
ceedings, Oct 2013.

[27] Nachiketh R. Potlapally, Srivaths Ravi, Anand
Raghunathan, and Niraj K. Jha. Analyzing the
energy consumption of security protocols. In
Proceedings of the 2003 International Sympo-
sium on Low Power Electronics and Design,
2003.

[28] Android developer sdk. https:
//developer.android.com/sdk/index.
html.

[29] Alexa internet. http://www.alexa.com.

10



[30] Wireshark. https://www.wireshark.org.

[31] Victor Agababov, Michael Buettner, Victor
Chudnovsky, Mark Cogan, Ben Greenstein,
Shane McDaniel, Michael Piatek, Colin Scott,
Matt Welsh, and Bolian Yin. Flywheel:
Google’s data compression proxy for the mo-
bile web. In 12th USENIX Symposium on Net-
worked Systems Design and Implementation
(NSDI 15).

11


