
pHost: Distributed Near-Optimal Datacenter
Transport Over Commodity Network Fabric

Peter X. Gao
petergao@berkeley.edu

Akshay Narayan
akshay@berkeley.edu

Gautam Kumar
gautamk@berkeley.edu

Rachit Agarwal
ragarwal@berkeley.edu

Sylvia Ratnasamy
sylvia@berkeley.edu

Scott Shenker
shenker@berkeley.edu

University of California at Berkeley

ABSTRACT
The importance of minimizing flow completion times (FCT)
in datacenters has led to a growing literature on new network
transport designs. Of particular note is pFabric, a protocol
that achieves near-optimal FCTs. However, pFabric’s perfor-
mance comes at the cost of generality, since pFabric requires
specialized hardware that embeds a specific scheduling pol-
icy within the network fabric, making it hard to meet diverse
policy goals. Aiming for generality, the recent Fastpass pro-
posal returns to a design based on commodity network hard-
ware and instead relies on a centralized scheduler. Fastpass
achieves generality, but (as we show) loses many of pFab-
ric’s performance benefits.

We present pHost, a new transport design aimed at
achieving both: the near-optimal performance of pFabric and
the commodity network design of Fastpass. Similar to Fast-
pass, pHost keeps the network simple by decoupling the net-
work fabric from scheduling decisions. However, pHost in-
troduces a new distributed protocol that allows end-hosts to
directly make scheduling decisions, thus avoiding the over-
heads of Fastpass’s centralized scheduler architecture. We
show that pHost achieves performance on par with pFabric
(within 4% for typical conditions) and significantly outper-
forms Fastpass (by a factor of 3.8×) while relying only on
commodity network hardware.

CCS Concepts
•Networks → Transport protocols; Data center net-
works;
Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.

CoNEXT ’15 December 01–04, 2015, Heidelberg, Germany
c© 2015 ACM. ISBN 978-1-4503-3412-9/15/12. . . $15.00

DOI: 10.1145/2716281.2836086

Keywords
Datacenter network; Packet transport; Flow scheduling

1. INTRODUCTION
Users of Internet services are extremely sensitive to de-

lays. Motivated by this, there has been a tremendous ef-
fort recently to optimize network performance in mod-
ern datacenters. Reflecting the needs of datacenter applica-
tions, these efforts typically focus on optimizing the more
application-centric notion of flow completion time (FCT),
using metrics such as a flow’s slowdown which compares
its FCT against the theoretical minimum (flow size in bytes
divided by the access link bandwidth).

Recent research has produced a plethora of new datacen-
ter transport designs [5,6,8,12–14,18]. The state-of-the-art is
pFabric [6] that achieves close to theoretically minimal slow-
down over a wide variety of workloads. However, to achieve
this near-optimal performance, pFabric requires specialized
network hardware that implements a specific packet schedul-
ing and queue management algorithm1. There are two disad-
vantages to this: (i) pFabric cannot use commodity hardware,
and (ii) pFabric’s packet scheduling algorithm cannot be al-
tered to achieve policy goals beyond minimizing slowdown
— such goals may become relevant when the datacenter is
shared by multiple users and/or multiple applications.

Countering this use of specialized hardware, the Fastpass
proposal [14] uses commodity switches coupled with a flex-
ible and fine-grained (close to per-packet) central sched-
uler. While this allows the network fabric to remain sim-

1Specifically, in pFabric, each packet carries the number of
currently remaining (that is, un-ACKed) bytes in the packet’s
flow. A pFabric switch defines a flow’s priority based on the
packet from that flow with the smallest remaining number
of bytes. The switch then schedules the oldest packet from
the flow with the highest priority. Note that, within a flow,
the oldest packet may be different from the packet with the
fewest remaining bytes since packets transmitted later may
record fewer remaining bytes.

10.1145/2716281.2836086

ple and policy-agnostic, the resulting performance is sig-
nificantly worse than that achieved by pFabric, especially
for short flows (§4). In this paper, we ask: Is it possible to
achieve the near-ideal performance of pFabric using com-
modity switches?

We answer this question in the affirmative with pHost, a
new datacenter transport design that is simple and general
— requiring no specialized network hardware, no per-flow
state or complex rate calculations at switches, no centralized
global scheduler and no explicit network feedback — yet
achieves performance surprisingly close to pFabric.

In the next section, we provide the rationale for and
overview of the pHost design. We provide the specifics of
our design in §3. In §4 we evaluate pHost’s performance,
comparing it against pFabric [6] and Fastpass [14]. We dis-
cuss related work in §5 and close the paper with a few con-
cluding comments in §6.

2. PHOST OVERVIEW
We start with a brief review of modern datacenter net-

works (§2.1). We then describe the key aspects of pHost’s
design (§2.2), and close the section with an intuitive descrip-
tion of why pHost’s approach works (§2.3).

2.1 Modern Datacenter Networks
Modern datacenter networks differ from traditional WAN

networks in several respects.

• Small RTTs: The geographic extent of datacenter networks
is quite limited, so the resulting speed-of-light latencies
are small. In addition, switch forwarding latencies have
dropped as cut-through switching has become common in
commodity switches.

• Full bisection bandwidth: By using topologies such as
Fat-Tree [3] or VL2 [11], datacenter networks now pro-
vide full bisection bandwidth [2, 16].

• Simple switches: Datacenter switches tend to be relatively
simple (compared to high-end WAN routers). However,
they do provide some basic features: a few priority levels
(typically 8–10 [1, 5, 12]), ECMP and/or packet spraying
(that is, randomized load balancing on a per-flow and/or
per-packet basis [1, 10]), cut-through switching, and rela-
tively small buffers.

pHost both assumes and exploits these characteristics of
datacenter networks, as we elaborate on in §2.3.

2.2 Basic Transport Mechanism
We now provide a high-level overview of pHost’s trans-

port mechanism. pHost is built around a host-based schedul-
ing mechanism that involves requests-to-send (RTS), per-
packet token assignment, and receiver-based selection of
pending flows. These techniques have their roots in wireless
protocols (e.g., 802.11) and capability-based DDoS mecha-
nisms (e.g., SIFF [19]). Specifically:

• Each source end-host, upon a flow arrival, sends a re-
quest to send (RTS) packet to the destination of the flow.
The RTS may contain information relevant for making
scheduling decisions (such as flow’s size, or which tenant
the source belongs to, etc.).

• Once every packet transmission time, each destination
end-host considers the set of pending RTSs (that is, RTSs
for flows that still have bytes to send) and sends a “to-
ken” to one of the corresponding sources. The token al-
lows the source to transmit one data packet from that flow,
and may specify the priority level at which the packet is to
be sent at. Thus, each destination host performs per-packet
scheduling across the set of active flows independent of
other destinations.

• Tokens expire if the source has not used the token within a
short period after receiving the token (default being 1.5×
MTU-sized packet transmission time). Each source may
also be assigned a few “free tokens” for each flow, which
need not be sent from the destination host.

• After each packet transmission, a source selects one of its
unexpired tokens and sends the corresponding data packet.
Thus, each source host also performs a selection across its
set of active flows independent of our sources.

• Once the destination has received all data packets for a
flow, it sends an ACK packet to the source.

• All control packets (RTS, tokens, ACKs) are sent at the
highest priority.

pHost’s design has several degrees of freedom: the schedul-
ing at the destination (which flows to send next token to),
the scheduling at the source (which token to use after each
packet transmission), the priority level at which each data
packet is sent at, and the number of free tokens assigned
to the sources. These can be configured to achieve different
performance goals, without any modification in the network
fabric. For instance, we demonstrate later that pHost is com-
petitive with pFabric when the above degrees of freedom are
configured to globally minimize slowdown, but can also be
configured to optimize for performance metrics other than
slowdown (e.g., meeting flow deadlines, or achieving fair-
ness across multiple tenants, etc.).

2.3 Why pHost works
Similar to prior proposals (e.g., pFabric [6]), we utilize the

packet-spraying feature found in many commodity switches
(in which packets are spread uniformly across the set of
available routes) [1, 10]. Intuitively, using packet-spraying
in a full-bisection-bandwidth network can eliminate almost
all congestion in the core (§4), so we do not need sophis-
ticated path-level scheduling (as in Fastpass) nor detailed
packet scheduling in the core switches (as in pFabric). How-
ever, we do make use of the few levels of priority available in
commodity switches to ensure that signaling packets suffer
few drops.

While there is no congestion in the core, there can still
be congestion at the destination host if multiple sources are
sending flows to the destination at the same time. In pHost,
this comes down to how the destination grants tokens in re-
sponse to RTS requests from sources. Choosing flows that
should be assigned tokens at any time is effectively a bipar-
tite matching problem. A centralized scheduler could com-
pute a match based on a global view (akin to how early
routers managed their switch fabrics) but this would incur
the complexity of a scalable centralized scheduler and the la-
tency overhead of communication with that scheduler (§4).
In pHost, we instead use a fully decentralized scheduler
(once again, akin to router scheduler designs such as PIM [7]
and iSlip). The resulting match may be imperfect, but we
compensate for this in two ways. To avoid starvation at the
source (if a destination does not respond with a token), we
allow the source to launch multiple RTSs in parallel. Each
source is also given a small budget of free tokens for each
flow; this also allows sources to start sending without wait-
ing for the RTT to hear from the destination. To avoid star-
vation at the destination (e.g., when a source does not utilize
the token it was assigned), we use a back-off mechanism
where (for a short time) a destination avoids sending tokens
to a particular source if the source has not used the tokens it
was recently assigned by the destination.

As we shall show, the combination of these techniques
avoids starvation at the hosts, and allow pHost to achieve
good network utilization despite a fully decentralized host-
based scheduler.

3. DESIGN DETAILS
We now describe the details of pHost’s design. At a high

level, there are two main components to pHost’s design:
(i) the protocol that dictates how sources and destinations
communicate by exchanging and using RTS, token and data
packets, and (ii) the scheduling policy that dictates which
sources and destinations communicate.

We start by describing the protocol that end-hosts imple-
ment (§3.1) and then elaborate on how this protocol ensures
high network utilization (§3.2). We then describe how pHost
supports flexible scheduling policies (§3.3). Finally we de-
scribe how pHost achieves reliable transmission in the face
of packet drops (§3.4).

3.1 pHost Source and Destination

pHost end-hosts run simple algorithms for token assign-
ment and utilization. The algorithm for the source is sum-
marized in Algorithm 1. When a new flow arrives, the source
immediately sends an RTS to the destination of the flow. The
RTS may include information regarding the flow (flow size,
deadline, which tenant the flow belongs to, etc) to be used by
the destination in making scheduling decisions. The source
maintains a per-flow list of “tokens” where each token rep-
resents the permission to send one packet to the flow’s desti-

Algorithm 1 pHost algorithm at Source.

if new flow arrives then
Send RTS

ActiveTokens← FreeTokens . Add free tokens (§3.2)

else if new token T received then
Set ExpiryTime(T) . Tokens expire in fixed time (§3.2)

ActiveTokens← T

else if idle then
T = Pick(ActiveTokens) . pick unexpired token (§3.3)

Send Packet corresponding to T

end if

nation; we refer to this as the ActiveTokens list. The Active-
Tokens list is initialized with a configurable number of “free
tokens” (we elaborate on the role of free tokens in §3.2); all
subsequent tokens can only be explicitly granted by the des-
tination in response to an RTS.

When a source receives a token from the destination, it
adds this token to its ActiveTokens list. Each token has an
associated expiry time and the source is only allowed to send
a packet if it holds an unexpired token for that packet (again,
we elaborate on the role of token timeouts in §3.2). When-
ever a source is idle, it selects a token from ActiveTokens
based on the desired policy goals (§3.3) and sends out the
packet for the corresponding token.

The high-level algorithm used at the destination is sum-
marized in Algorithm 2. Each destination maintains the set
of flows for which the destination received an RTS but has
not yet received all the data packets; we refer to this as the
PendingRTS list. When the destination receives a new RTS,
it adds the RTS to PendingRTS immediately. Every (MTU-
sized) packet transmission time, the destination selects an
RTS from PendingRTS list based on the desired policy goals
(§3.3) and sends out a token to the corresponding source.
The token contains the flow ID, the packet ID and (option-
ally) a priority value to be used for the packet. As at the
source, each token has an associated expiry time (we use a
value of 1.5×MTU-sized packet transmission time). A to-
ken assigned by the destination is considered revoked if it
is not utilized within its expiry time. This avoids conges-
tion at the destination as sources cannot use tokens at ar-
bitrary times. In addition, the destination maintains a count
of the number of expired tokens for the flow (the difference
between the number of tokens assigned and the number of
packets received). If this count exceeds a threshold value,
the flow is marked as “downgraded” which lowers the like-
lihood it will be granted tokens in the immediate future; we
elaborate on the details and purpose of downgrading in §3.2.
Finally, once the destination has received all the packets for
a flow, it sends an ACK to the source and removes the RTS
from PendingRTS list.

Algorithm 2 pHost algorithm at Destination.

if receive RTS R then
PendingRTS← R

else if idle then
F = Pick(PendingRTS) . Pick an active flow (§3.3)

Send Token T for flow F

if F.#ExpiredTokens > Threshold then . (§3.2)

Downgrade F for time t? . (§3.2)

end if
else if Received data for token T then

Set Token T as responded

end if

Note that all control packets (RTS, token, ACK) in pHost
are sent at the highest priority. Similar to TCP where each
data packet generates an ACK packet, pHost uses one to-
ken per data packet. In addition, pHost uses just one RTS
and one ACK packet per flow. All control packets in pHost
are of 40 bytes; thus, the bandwidth and end-to-end latency
overheads of control packets in pHost are minimal.

3.2 Maximizing Network Utilization
As discussed earlier, packet spraying in a full-bisection

bandwidth network eliminates almost all congestion in the
core. However, sources sending multiple RTSs in paral-
lel (Algorithm 1) and destinations assigning one token per
packet transmission time (Algorithm 2) may lead to network
underutilization. For a centralized scheduler (as in Fastpass),
avoiding this underutilization is easy since the scheduler has
a global view of the network. To achieve high network uti-
lization in a fully decentralized manner, however, pHost has
to resolve two challenges. We discuss these challenges and
how pHost resolves these challenges.

Free tokens for new flow arrivals. Recall that upon a flow
arrival, the source immediately sends an RTS to the corre-
sponding destination. The first challenge is that the band-
width at the source may be wasted until the token for the
flow has been received (even if the destination is free, source
cannot send the packets). This may have particularly adverse
effect on short flow performance, since such a wait may be
unnecessary. pHost avoids this overhead by assigning each
source a few “free tokens” per flow (akin to TCP’s initial
congestion window) that can be used by the source without
receiving any tokens from the corresponding destination.

Source downgrading and token expiry. To understand the
second challenge, let us consider the case of Figure 1. When
the source in the above example prefers the token for flow
B in the second time unit, the bandwidth at the destination
for flow A is wasted. Even worse, another source may have
a flow C to send to the destination of flow A, but the des-
tination continues sending tokens to the source of flow A,
which in turn continues to prefer utilizing tokens for flow B.
This may lead to long term wastage of bandwidth at both the

Destination A Sender Destination B

Figure 1: In this example, two flows A and B arrive at the source
at roughly the same time, and two RTS are sent to the respective
destinations. Suppose the source gets a token for flow A first. Since
the source has only one token, it immediately consumes it by send-
ing the corresponding data packet to destination A. Now suppose
the source receives another token for flow A and a token for flow B
while it is sending the data packet for flow A. The source now has
two tokens, one for each flow. Suppose the source decides to utilize
the token for flow B at this step.

destination of flow A and the source of flow C.
pHost uses a source downgrading mechanism to prevent

a destination from sending tokens to a source that does not
respond with data packets. As mentioned earlier, pHost des-
tinations maintain a count of the number of unexpired tokens
for each source. If this count exceeds a threshold value in
succession (default being a BDP worth of tokens), the des-
tination downgrades the source and stops assigning tokens
to that source. The source is left downgraded for a timeout
period (default being 3× RTT). After the timeout period, the
destination resends tokens to the source for the packets that
were not received.

3.3 Local Scheduling Problem
Datacenter network operators today have to contend be-

tween a rich mix of tenants and applications sharing the net-
work, each of which may have a different performance goal.
For instance, the goal in some scenarios may be to opti-
mize for tail latency (e.g., web search and social networking)
across all flows. In other scenarios (e.g., multiple tenants),
the goal may be to share network bandwidth fairly among
the tenants. As pHost implements scheduling at end-hosts,
it naturally provides algorithmic flexibility in optimizing for
various performance metrics. In this subsection, we describe
how this enables flexibility in terms of network resource al-
location between users and applications, and to optimize the
network for a wide variety of performance metrics.

Recall, from §3.1, that the pHost sources send a RTS
to the destination expressing their intent of sending pack-
ets upon each flow arrival. The sources embed the infor-
mation related to the flow (e.g., flow size, deadlines, etc)
within the RTS packet. The destinations then assign tokens
to the flows, optionally specifying a priority level to be used
for the packets in the flow. We describe how this design
enables optimizing for three different performance objec-
tives using end-host scheduling: (i) minimizing flow com-
pletion time [5, 6, 8, 13, 14]; (ii) deadline-constrained traf-
fic [6, 12, 18]; and (iii) fairness across multiple tenants.

The optimal algorithm for minimizing flow completion
time when scheduling over a single link is Shortest Remain-
ing Processing Time (SRPT) scheduling, which prioritizes
the flow with the fewest remaining bytes. Transport proto-
cols [6,14] that achieve near-ideal performance emulate this
policy over a distributed network fabric by prioritizing flows
that have least number of packets remaining to complete the
flow. pHost can emulate SRPT over a distributed network
fabric using the same scheduling policy — each destina-
tion prioritizes flows with least number of remaining packets
while assigning tokens; the destination additionally allows
the sources to send short flows with the second highest prior-
ity and long flows with the third highest priority (recall, con-
trol packets are sent with the highest priority). Note that this
is significantly different from pFabric, which assigns packet
priority to be the remaining flow size. Similarly, the sources
prioritize flows with the fewest number of remaining packets
while utilizing tokens; the sources also use any free tokens
when idle. We show in §4 that using this simple scheduling
policy at the end-hosts, pHost achieves performance close
to that of state-of-the-art protocols when minimizing flow
completion time.

Next, we discuss how pHost enables optimizing for
deadline-constrained traffic [6, 12, 18]. The optimal algo-
rithm for scheduling deadline-constrained flows over a sin-
gle link is Earliest Deadline First (EDF), which prioritizes
the flow with the earliest deadline. pHost can emulate EDF
by having each source specify the flow deadline in its RTS.
Each destination then prioritizes flows with earliest dead-
line (analogous to the SRPT policy) when assigning tokens;
the sources, as earlier, prioritize flows with earliest deadline
when utilizing tokens.

Indeed, pFabric [6] can emulate the above two policies de-
spite embedding the scheduling policies within the network
fabric. We now discuss a third policy which highlights the
necessity of decoupling scheduling from the network fab-
ric. Consider a multi-tenant datacenter network where tenant
A is running a web search workload (most flows are short)
while tenant B is running a MapReduce workload (most
flows are long). pFabric will naturally prioritize tenant A’s
shorter flows over tenant B’s longer flows, starving tenant
B. pHost, on the other hand, can avoid this starvation using
its end-host based scheduling. Specifically, the destinations
now maintain a counter for the number of packets received
so far from each tenant and in each unit time assign a token
to a flow from the tenant with smaller count. While providing
fairness across tenants, pHost can still allow achieving the
tenant-specific performance goals for their respective flows
(implementing scheduling policies for each tenant’s flows).

3.4 Handling Packet drops
As we show in §4, the core idea of pHost end-hosts

performing per-packet scheduling to minimize congestion
at their respective access links leads to negligible number
of packet drops in full-bisection bandwidth datacenter net-
works. For the unlikely scenario of some packets being

dropped, per-packet token assignment in pHost lends itself
to an extremely simple mechanism to handle packet drops.
In particular, recall from §3.1, that each destination in pHost
assigns a token to a specific packet identifying the packet ID
along with the token. If the destination does not receive one
of the packets until a token has been sent out for the last
packet of the flow (or timeout), the destination simply reis-
sues a token for the lost packet when the flow has the turn
to receive a token. The source, upon receiving the token, re-
transmits the lost packet(s).

4. EVALUATION
In this section, we evaluate pHost over a wide range of

datacenter network workloads and performance metrics, and
compare its performance against pFabric and Fastpass.

4.1 Test Setup
Our overall test setup is identical to that used in pFab-

ric [6]2. We first elaborate on this setup — the network topol-
ogy, workload and metrics; we then describe the protocols
we evaluate and the default test configurations we use.

Network Topology. We use the same network topology as in
pFabric [6]. The topology is a two-tier multi-rooted tree with
9 racks and 144 end-hosts. Each end-host has a 10Gbps ac-
cess link and each core switch has nine 40Gbps links; each
network link has a propagation delay of 200ns. The resul-
tant network fabric provides a full bisection bandwidth of
144Gbps. Network switches implement cut-through routing
and packet spraying (functions common in existing com-
modity switches [1,6,10]). pFabric assumes each switch port
has a queue buffer of 36kB; we use this as our default con-
figuration value but also evaluate the effect of per-port buffer
sizes ranging from 6kB-72kB.

Workloads. We evaluate performance over three produc-
tion traces whose flow size distributions are shown in Fig-
ure 2. All three traces are heavy-tailed, meaning that most
of the flows are short but most of the bytes are in the long
flows. The first two – “Web Search” [5] and “Data Min-
ing” [11]) – are the traces used in pFabric’s evaluation. The
third “IMC10” trace uses the flow size distributions reported
in a measurement study of production datacenters [9]. The
IMC10 trace is similar to the Data Mining trace except in the
tail: the largest flow in the IMC10 trace is 3MB compared
to 1GB in the Data Mining trace. In addition to production
traces, we also consider a synthetic “bimodal” workload that
we use to highlight specific performance characteristics of
the three protocols; we elaborate on this workload inline in
§4.3. As in prior work [6, 8], we generate flows from these
workloads using a Poisson arrival process for a specified tar-
get network load. We consider target network loads ranging
from 0.5−0.8.
2We would like to thank the pFabric authors for sharing their
simulator with us; our simulator (https://github.com/NetSys/
simulator) builds upon theirs.

https://github.com/NetSys/simulator
https://github.com/NetSys/simulator

104 105 106 107 108 109

Flow Size (Bytes)

0.0

0.2

0.4

0.6

0.8

1.0
C

D
F Web Search

Data Mining
IMC 10

Figure 2: Distribution of flow sizes across workloads used in our
evaluation. Note that short flows dominate all workloads; however,
Data Mining and IMC10 workloads have significantly larger frac-
tion of short flows when compared to the Web Search workload.

Traffic matrices. Our default traffic matrix is all-to-all,
where each source host generates flows to each other host
using above workloads. For completeness, in §4.3, we con-
sider two additional traffic matrices. In permutation traffic
matrix, each source sends flows to a single destination cho-
sen uniformly at random without replacement. Finally, we
also evaluate for an incast traffic matrix where each destina-
tion receives flows from a specified number of sources. We
describe the setup for the latter two traffic matrices inline.

Performance metrics. The primary metric we focus on is
that used in pFabric: mean slowdown, defined as follows: let
OPT(i) be the flow completion time of flow i when it is the
only flow in the network and let FCT(i) be the observed flow
completion time when competing with other flows. Then,
for flow i, the slowdown is defined as the ratio of FCT(i)
and OPT(i). Note that FCT(i) ≥ OPT(i); thus, a smaller
slowdown implies better performance. The mean and high
percentile slowdowns are calculated accordingly across the
set of flows in the workload. For completeness, in §4.3, we
consider a range of additional metrics considered in previ-
ous studies, including “normalized” FCT, throughput, and
the fraction of flows that meet their target deadlines; we de-
fine these additional metrics in §4.3.

Evaluated Protocols. We evaluate pHost against pFab-
ric [6] and Fastpass [14]. For pFabric, we use the simu-
lator provided by the authors of pFabric with their recom-
mended configuration options: an initial congestion window
of 12 packets, an RTO of 45µs, and the network topology
described above. Unfortunately, a packet-level simulator is
unavailable for Fastpass and hence we implemented Fastpass
in our own simulator. Our implementation of Fastpass uses:
(1) 40B control packets and an epoch size of 8 packets (Fast-
pass makes scheduling decisions every epoch with a recom-
mended epoch interval of 8 MTU transmission times), (2)
zero processing overhead at the centralized packet scheduler
(i.e., we assume the scheduler solves the global scheduling
problem infinitely fast); and (3) perfect time synchronization
(so that all end-hosts are synchronized on epoch start and
end times). Note that the latter two represent the best-case
performance scenario for Fastpass.

DataMining WebSearch IMC10
0

1

2

3

4

5

6

M
e
a
n
 S

lo
w

d
o
w

n

pHost pFabric Fastpass

Figure 3: Mean slowdown of pFabric, pHost, and Fastpass across
different workloads for our default configuration (0.6 load, per-port
buffers of 36kB). pHost performs comparable to pFabric, and 1.3–
4× better than Fastpass.

Default configuration. Unless stated otherwise, our evalua-
tion use a default configuration that is based on an all-to-all
traffic matrix with a network load of 0.6, a per-port buffer
of 36kB at switches, and other settings as discussed above.
For pHost, we set the token expiry time to be 1.5×, source
downgrade time to be 8× and timeout to be 24×MTU-sized
packet transmission time (note that BDP for our topology is
8 packets). Moreover, we assign 8 free tokens to each flow.
We evaluate the robustness of our results over a range of per-
formance metrics, workloads, traffic matrices and parameter
settings in §4.3.

4.2 Performance Evaluation Overview
Figure 3 shows the mean slowdown achieved by each

scheme for our three trace-based workloads. We see that
the performance of pHost is comparable to that of pFab-
ric. pFabric is known to achieve near-optimal slowdown [6];
hence these results show that pHost’s radically different
design approach based on scheduling at the end-hosts is
equally effective at optimizing slowdown.

Somewhat surprisingly, we see that slowdown with Fast-
pass is almost 4× higher than pHost and pFabric.3 We can
explain this performance difference by breaking down our
results by flow size: Figure 4 shows the mean slowdown for
short flows versus that for long flows. For long flows, all the
three protocols have comparable performance; however, for
short flows, both pHost and pFabric achieve significantly
better performance than Fastpass. Since the three workloads
contain approximately 82% short flows and 18% long flows,
the performance advantage that pFabric and pHost enjoy for
short flows dominates the overall mean slowdown.

That pFabric and pHost outperform Fastpass for short
flows is (in retrospect) not surprising: Fastpass schedules
flows in epochs of 8 packets, so a short flow must wait for
at least an epoch (∼ 10µs) before it gets scheduled. Further,
the signaling overhead of control packets adds another round
trip of delay before a short flow can send any packet. Nei-

3Note that the evaluation in [14] does not compare the per-
formance of Fastpass to that of pFabric.

DataMining WebSearch IMC10
0

1

2

3

4

5

6

7

8

M
e
a
n
 S

lo
w

d
o
w

n

pHost pFabric Fastpass

(a) Short flows: Mean Slowdown

DataMining WebSearch IMC10
0

1

2

3

4

5

6

7

8

M
e
a
n
 S

lo
w

d
o
w

n

pHost pFabric Fastpass

(b) Long flows: Mean Slowdown

Figure 4: Breakdown of mean slowdown by flow size for pFabric, pHost, and Fastpass (all flows greater than 10MB (for Data Mining
and Web Search workloads) and greater than 100KB (for IMC10 workload) are considered long flows). All the three schemes have similar
performance for long flows; for short flows, however, pHost performs similar to pFabric and 1.3–4× better than Fastpass.

ther pFabric nor pHost incur this overhead on flow arrival.
That all three protocols have comparable performance for
long flows is also intuitive because, for a long flow, the ini-
tial waiting time in Fastpass (one epoch and one round trip
time) is negligible compared to its total FCT.

The above results show that pHost can match the near-
optimal performance of pFabric (without requiring spe-
cialized support from the network fabric) and significantly
outperforms Fastpass (despite lacking the global view in
scheduling packets that Fastpass enjoys). Next, we evalu-
ate whether the above conclusions hold for a wider range
of workloads, performance metrics and traffic matrices.

4.3 Varying Metrics and Scenarios
We now evaluate pHost– and how pHost compares to

pFabric and Fastpass – over varying performance metrics,
network load, traffic matrices, etc.

Varying Performance Metrics. Our evaluation so far has
focused on mean slowdown as our performance metric.
We now evaluate performance using five additional metrics
introduced in prior work: (i) normalized flow completion
time [8, 12–14], defined as ratio of the mean of FCT(i)
and the mean of OPT(i); (ii) network throughput, mea-
sured as the number of bytes delivered to receivers through
the network over unit time normalized by the access link
bandwidth; (iii) the 99 percentile in slowdown [6]; (iv) for
deadline-constrained traffic, the fraction of flows that meet
deadlines [6, 12, 18]; and (v) packet drop rates. Figure 5
shows our results using the above metrics.

NFCT. Figure 5(a) shows that all three protocols see sim-
ilar performance as measured by NFCT; across all evalu-
ated cases, the maximum difference in NFCT between any
two protocols is 15%. This similarity is simply because the
NFCT metric, as defined, is (unlike mean slowdown) domi-
nated by the FCT of long flows. FCT for long flows is in turn
dominated by the time to transmit the large number of bytes
involved, which is largely unaffected by protocol differences
and hence all three protocols have similar performance.

Throughput. The results for throughput (shown in Fig-
ure 5(b)) follow trend similar to NFCT results, again because
overall throughput is dominated by the performance of long
flows. Note that the network load (rate at which packets ar-
rive at the sources) matches the throughput or network uti-
lization (rate at which packets arrive at the destination) when
the slowdown is 1. Since this is not the case, we expect the
throughput to be less than the load; that is less than 6Gbps
for 0.6 network load over a topology with 10Gbps access
link bandwidth.

Deadlines. We now evaluate the performance of the three
protocols over deadline-constrained traffic (Figure 5(c)). We
assign a deadline to each flow using exponential distribution
with mean 1000µs [6]; if the assigned deadline is less than
1.25× the optimal FCT to a flow, we set the deadline for
that flow to be 1.25× its optimal FCT. We observe that all
protocols achieve similar performance in terms of fraction
of flows that meet their deadlines, with the maximum differ-
ence in performance between any two protocols being 2%.

We conclude that for applications that care about opti-
mizing NFCT, throughput or deadline-constrained traffic, all
three protocols offer comparable performance. The advan-
tage of pHost for such applications lie in considerations
other than performance: that pHost relies only on commod-
ity network fabrics and that pHost avoids the engineering
challenges associated with scaling a centralized controller.

Tail latency and drop rates. We now evaluate the three pro-
tocols for two additional performance metrics: tail latency
for short flows and the packet drop rate.

99%ile Slowdown. Prior work has argued the importance
of tail performance in datacenters and hence we also look
at slowdown at the 99-percentile, shown in Figure 5(d). We
see that for both pHost and pFabric, the 99%ile slowdown
is around 2 (roughly 33% higher than the mean slowdown),
while for Fastpass the slowdown increases to almost 2× the
mean slowdown.

Drop rate. We now measure the drop rates for the three
protocols. By design, one would expect to see very different
behavior in terms of packet drops between pFabric and the

DataMining WebSearch IMC10
0

1

2

3

4
N

FC
T

pHost pFabric Fastpass

(a) NFCT
DataMining WebSearch IMC10

0

2

4

6

8

10

T
h
ro

u
g
h
p
u
t(

G
b
p
s)

pHost pFabric Fastpass

(b) Throughput
DataMining WebSearch IMC10

0.0

0.2

0.4

0.6

0.8

1.0

D
e
a
d
lin

e
 M

e
e
t

R
a
ti

o

pHost pFabric Fastpass

(c) Fraction of flows meeting deadline

DataMining WebSearch IMC10
0

2

4

6

8

10

12

9
9
 P

e
rc

e
n
ti

le
 S

lo
w

d
o
w

n

pHost pFabric Fastpass

(d) 99%-ile slowdown for short flows
0.5 0.6 0.7 0.8Load

0.00

0.02

0.04

0.06

0.08

0.10

0.12

D
ro

p
 R

a
te

pHost pFabric Fastpass

(e) Drop rate
Hop 1 Hop 2 Hop 3 Hop 4

100
101
102
103
104
105
106
107
108

N
u
m

b
e
r

o
f

P
a
ck

e
t

D
ro

p
s

pHost pFabric Fastpass

(f) Packet drops across hops

Figure 5: Performance of the three protocols across various performance metrics. See §4.3 for detailed discussion.

other two protocols — pHost and Fastpass. Indeed, pFabric
is deliberately aggressive in sending packets, expecting the
network to drop low priority packets in large numbers; in
contrast, pHost and Fastpass explicitly schedule packets to
avoid drops. Figure 5(e) shows the overall drop rate of each
protocol under increasing network load for the Web Search
workload. As expected, we see that pFabric has a high drop
rate that increases with load while pHost and Fastpass see
drop rates consistently close to zero even as load increases.

Figure 5(f) shows where drops occur in the network: we
plot the absolute number of packet drops at each of the 4
hops in the network (end-host NIC queue, the aggregation
switch upstream queue, the core switch queue, and the ag-
gregation switch downstream queue); 511 million packets
are injected into the network over the duration of the simu-
lation (network load being 0.6). We see that for pFabric, the
vast majority of packet drops occur in the first (61%) and last
(39%) hop queue, with almost no drops in the two intermedi-
ate hops. In contrast, because pHost and Fastpass explicitly
schedule packets, first and last hop drops are almost elimi-
nated: both protocols experience zero drops at the first hop,
the number of last hop drops for pHost and Fastpass are 836
and 0 packets respectively.

Finally, we note that the absolute number of drops within
the network fabric is low for all three protocols: 33, 5 and
182 drops for pHost, pFabric, and Fastpass respectively,
which represent less than 0.00004% of the total packets in-
jected into the network. This confirms our intuition that full
bisection bandwidth networks together with packet spray-
ing avoids most congestion (and hence the need for careful
scheduling) within the network fabric.

Varying network load. Our evaluation so far used traffic
generated at 0.6 network load. We now evaluate protocol

performance for network load varying from 0.5–0.9, as re-
ported in prior work. Figure 9 presents our results across the
three workloads and protocols.

We observe that the relative performance of the different
protocols across different network loads remains consistent
with our results from above. This is to be expected as the
distribution of short versus long flows remains unchanged
with varying load.

We also note that, in all cases, performance degrades as
network load increases. Closer examination revealed that in
fact the overall network becomes unstable at higher loads;
that is, with the network operating in a regime where it can
no longer keep up with the generated input load. In Figure 7,
we aim to capture this effect. In particular, the x-axis plots
the fraction of packets (out of the total number of packets
over the simulation time) that have arrived at the source as
the simulation progresses; the y-axis plots the fraction of
packets (again, out of the total number of packets across the
simulation time) that have arrived at the source but have not
yet been injected into the network by the source (“pending”
packets). In a stable network, the fraction of pending pack-
ets would remain roughly constant over the duration of the
simulation showing that the sources inject packets into the
network at approximately the same rate at which they arrive.
We observe that, at 0.6 load, this number does in fact re-
main roughly constant over time. However, at higher load,
this number increases as the simulation progresses, indicat-
ing that packets arrive faster than the rate at which sources
can inject then into the network. Measuring slowdown when
operating in this unstable regime is unwise since the mea-
sured value depends closely on the duration of the simula-
tion (e.g., in our experiments at 0.8 load, we could obtain
arbitrarily high slowdowns for pFabric by simply tuning the

0.5 0.6 0.7 0.8
Load

1

2

3

4

5

6

7
M

e
a
n
 S

lo
w

d
o
w

n
pHost pFabric Fastpass

(a) Data Mining

0.5 0.6 0.7 0.8
Load

1.0

1.5

2.0

2.5

3.0

M
e
a
n
 S

lo
w

d
o
w

n

pHost pFabric Fastpass

(b) Web Search

0.5 0.6 0.7 0.8
Load

1

2

3

4

5

6

7

M
e
a
n
 S

lo
w

d
o
w

n

pHost pFabric Fastpass

(c) IMC10

Figure 6: Performance of the three protocols across varying network loads.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Fraction of Packets Injected

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

Fr
a
ct

io
n
 o

f
P
a
ck

e
ts

 P
e
n
d
in

g 60% Load 70% Load 80% Load

Figure 7: Stability analysis for pFabric. x-axis is the fraction of
packets (out of total number of packets across the simulation) that
have arrived at the source as the simulation progresses; y-axis is the
fraction of packets (again, out of total number of packets across the
simulation) that have yet not been injected into the network by the
sources. pFabric is stable at 0.6 load, unstable beyond 0.7 load. We
get similar results for pHost and Fastpass.

length of the simulation run). This is the reason we select a
network load of 0.6 as our default configuration (compared
to the 0.8 used in pFabric).

New Workloads. Our results so far were based on three
traces used in prior work. While these reflect existing pro-
duction systems, network workloads will change as appli-
cations evolve and hence we sought to understand how
pHost’s performance will change for workloads in which
the ratio of short vs. long is radically different from that ob-
served today. We thus created a synthetic trace that uses a
simple bimodal distribution with short (3 packet) flows and
long (700 packet) flows and vary the fraction of short flows
from 0% to 99.5%. We show the corresponding mean slow-
down in Figure 8. We make two observations. The first is
that pHost once again matches pFabric’s performance over
the spectrum of test cases. The second — and perhaps more
interesting — observation is that the absolute value of slow-
down (for all protocols) varies significantly as the distribu-
tion of short vs. long flows changes; for pFabric and pHost,
the traces based on current workloads occupy the “sweet
spot” in the trend. This shows that although pFabric and our
own pHost achieve near-optimal performance (i.e., mean
slowdown values close to 1.0) for existing traces, this is not
the case for radically different workloads. Whether and how
one might achieve better performance for such workloads
remains an open question for future work.

0 10 20 30 40 50 60 70 80 90
Percent. Short Flows

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

M
e
a
n
 S

lo
w

d
o
w

n

pHost pFabric Fastpass

Figure 8: Mean slowdown of pHost, pFabric, and Fastpass in syn-
thetic workload (with varying fraction of short flows). Both pFabric
and pHost perform well when the trace is short flow dominated.
Fastpass performs similar to pHost and pFabric when there are
90% long flows, but gets significantly worse as the fraction of short
flows increases.

Varying traffic matrices. Our evaluation so far has focused
on all-to-all traffic matrix (TM). We now evaluate the per-
formance of pHost for two other traffic matrices — permu-
tation TM and incast TM.

In permutation TM, we match each source to a unique
destination and all flows from the source are generated (us-
ing the workloads described earlier) only for that destination.
Figure 9(a) and Figure 9(b) present results for the permuta-
tion TM for the three workloads from Figure 2 and for the
synthetic workload (with varying fraction of short flows).
We note that pHost significantly outperforms both pFab-
ric and Fastpass for the permutation TM across all work-
loads. Note that for permutation TM, there is little or no con-
tention across flows in the core. Thus, per-packet scheduling
as in pHost and Fastpass performs significantly better than
pFabric for long flows (extreme left point in Figure 9(b)).
For short flows, Fastpass performance degrades due to cen-
tralized scheduler overheads; however, pHost avoids such
overheads due to distributed scheduling and due to low con-
tention across flows to the same destination. Overall, thus,
pHost performs better than both pFabric and Fastpass across
all workloads.

For incast TM, we use a setup similar to pFabric [6].
Specifically, for each incast “request”, one destination re-
ceives a fixed amount of data from N sources chosen uni-
formly at random across the hosts in the network topology.
We set the amount of data to be 100MB and vary N from 5–

DataMining WebSearch IMC100
1
2
3
4
5
6
7

M
ea

n
Sl

ow
do

w
n

pHost pFabric Fastpass

(a) Permutation TM, Figure 2 workloads

0 10 20 30 40 50 60 70 80 90
Percent of Short Flows

1.0

1.5

2.0

2.5

3.0

3.5

M
ea

n
Sl

ow
do

w
n

pHost pFabric Fastpass

(b) Permutation TM, synthetic workload

5 10 15 20 25 30 35 40 45 50
senders

44

46

48

50

52

54

56

Av
er

ag
e

FC
T

(m
s)

pHost
pFabric
Fastpass

(c) Incast TM, flow completion time

5 10 15 20 25 30 35 40 45 50
senders

70

75

80

85

90

95

Av
er

ag
e

RC
T

(m
s)

pHost
pFabric
Fastpass

(d) Incast TM, request completion time

Figure 9: Performance of the three protocols across various traffic matrices. pHost performs better than pFabric and Fastpass for Permuta-
tion TM, and within 5% of pFabric for incast TM.

50, with each source generating 100MB/N amount of data
in a single flow. We repeat this for 10000 requests. Fig-
ure 9(c) shows the average FCT for the incast TM. We note
that each of pHost, pFabric and Fastpass perform within 7%
of each other. Figure 9(d) shows the average request com-
pletion time (RCT) of each scheme. Similar to FCT, the per-
formance difference between pHost, pFabric and Fastpass is
less than 4%, and varying N (number of sources simultane-
ously sending to the receiver) has negligible impact on RCT.
We also conducted experiments with varying amount of data
(100–1000MB); while absolute numbers change, the trends
remain the same. We conclude that each of these protocols
have comparable performance for incast TM.

Varying switch parameters. We evaluate the impact of
varying the per-port buffer size in switches. Figure 10 shows
the mean slowdown with increasing switch buffer sizes for
our Data Mining workload.4 We see that none of the three
schemes is sensitive to the sizing of switch buffers, vary-
ing less than 1% over the range of parameters evaluated
even with tiny 6.2 KB buffers. We also evaluated variation
of throughput with switch buffer sizes, for a workload with
100% long flows and 0.6 network load. The results for that
evaluation were very similar with each protocol observing
very little impact due to buffer sizes.

4For small buffer sizes (< 36kB) pFabric’s performance de-
grades if we use the default values for its parameters (initial
congestion window and retransmission timeout). Hence, for
each buffer size, we experimented with a range of different
parameter settings for pFabric and select the setting that of-
fers the best slowdown.

6kB 12kB 18kB 24kB 36kB 72kB
0
1
2
3
4
5
6
M

ea
n

Sl
ow

do
w

n
pHost pFabric Fastpass

Figure 10: Both pHost and pFabric perform well even with tiny
buffer sizes. Moreover, the performance of all the three protocols
remains consistent across a wide range of switch buffer sizes.

4.4 Flexibility
Our results so far focused purely on performance goals.

However, in addition to performance, datacenter operators
must also satisfy policy goals – e.g., ensuring isolation or
fairness between different tenants. Compared to pFabric,
pHost offers greater flexibility in meeting such policy goals
since pHost can implement arbitrary policies for how to-
kens are granted and consumed at end-hosts. To demonstrate
pHost’s flexibility, we consider a multi-tenant scenario in
which two tenants have different workload characteristics
and the operator would like the two tenants to fairly share
network bandwidth while allowing each tenant to optimize
for slowdown within its share. To achieve this in pHost,
we configure pHost’s token selection mechanism and packet
priority assignment to enforce fairness between the two ten-
ants. This is a minor change: we replace the SRPT priority
function with one that does SRPT for flows within a tenant,
but enforces that the tenant with fewer bytes scheduled so far

pHost pFabric
0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 T

hr
ou

gh
pu

t

Throughput Share Per Tenant

IMC10 Tenant
WebSearch Tenant

Figure 11: pHost, by decoupling flow scheduling from the net-
work fabric, makes is easy to implement diverse policy goals (e.g.,
fairness in a multi-tenant scenario). In this figure, one tenant gets
greater throughput with pFabric (for reasons discussed in §4.4),
while the throughput is more fairly allocated using pHost.

should be prioritized. Additionally we turn off data packet
priorities (all packets go at the same priority) and remove
“free token”.

We evaluate a scenario in which one tenant’s workload
uses the IMC10 trace, while the other tenant’s workload uses
the Web Search trace. Both the tenants inject the flows in
their trace at the beginning of the simulation and we measure
the throughput each tenant achieves. Figure 11 plots how the
overall throughput of the network is shared between the two
tenants in pFabric vs. pHost.

We see that pFabric allows the IMC10 tenant to achieve
significantly higher throughput than the Web Search tenant.
This is expected because the IMC10 workload has shorter
flows and a smaller mean flow size than the Web Search
workload (see Figure 2) and hence pFabric implicitly gives
the IMC10 tenant higher priority. In contrast, with pHost, the
two tenants see similar throughput.

5. RELATED WORK
Our work is related to two key network transport designs

proposed recently: pFabric [6] and Fastpass [14]. pFabric is
a distributed transport mechanism that achieves near-optimal
performance in terms of flow completion times; however,
pFabric requires specialized hardward that embeds a specific
scheduling policy within the network fabric. This approach
not only has the disadvantage of requiring specialized net-
work hardware, but also limits generality — the scheduling
algorithm cannot be altered to achieve diverse policy goals.
Fastpass aims at generality using commodity network fabric
along with a centralized scheduler, but loses many of pFab-
ric’s performance benefits. pHost achieves the best of the
two worlds: the near-optimal performance of pFabric, and
the commodity network design of Fastpass.

We compare and contrast pHost design against other rate
control and flow scheduling mechanisms below.

Rate Control in Datacenters. Several recent proposals in
datacenter transport designs use rate control to achieve var-
ious performance goals, such as DCTCP [5], D2TCP [17],
D3 [18], PDQ [12], PIAS [8], PASE [13]. Specifically,
DCTCP uses rate control (via explicit network feedback)

to minimize end-to-end latency for short flows. D2TCP and
D3 use rate control to maximize the number of flows that
can meet their respective deadlines. PDQ has goals similar
to pFabric; while a radically different approach, PDQ has
limitations similar to pFabric — it requires a complicated
specialized network fabric that implements PDQ switches.
While interesting, all the above designs lose the performance
benefits of pFabric [6] either for short flows, or for long
flows; moreover, many of these designs require specialized
network hardware similar to pFabric. pHost requires no spe-
cialized hardware, no complex rate calculations at network
switches, no centralized global scheduler and no explicit net-
work feedback, and yet, performs surprisingly close to pFab-
ric across a wide variety of workloads and traffic matrices.

Flow Scheduling in Datacenters. Hedera [4] performs flow
scheduling at coarse granularities by assigning different
paths to large flows to avoid collision. Hedera improves long
flow performance, but ignores short flows that may require
careful scheduling to meet performance goals when compet-
ing with long flows. Mordia [15] schedules at finer granu-
larity (∼ 100µs), but may also suffer from performance is-
sues for short flows. Indeed, 100µs corresponds to the time
to transmit a ∼ 121KB flow in a datacenter with 10Gbps
access link capacity. In the Data Mining trace, about 80%
flows are smaller than that. Fastpass achieves superior per-
formance by performing per-packet scheduling. However,
the main disadvantage of Fastpass is the centralized sched-
uler that leads to performance degradation for short flows (as
shown in §4). Specifically, Fastpass schedules an epoch of 8
packets(∼ 10µs) in order to reduce the scheduling and sig-
naling overhead. So no preemption can happen once the 8
packets are scheduled, which fundamentally limits the per-
formance of flows that are smaller than 8 packets. pHost
also performs per-packet scheduling but avoids the scalabil-
ity and performance issues of Fastpass using a completely
distributed scheduling at the end hosts.

6. CONCLUSION
There has been tremendous recent work on optimizing

flow performance in datacenter networks. The state-of-the-
art transport layer design is pFabric, that achieves near-
optimal performance but requires specialized network hard-
ware that embeds a specific scheduling policy within the net-
work fabric. We presented pHost, a new datacenter trans-
port design that decouples scheduling policies from the net-
work fabric and performs distributed per-packet scheduling
of flows using the end-hosts. pHost is simple — it requires
no specialized network fabric, no complex computations in
the network fabric, no centralized scheduler and no explicit
network feedback — and yet, achieves performance surpris-
ingly close to pFabric across all the evaluated workloads and
network configurations.

Acknowledgements
We thank our shepherd, Costin Raiciu, and the anonymous
reviewers for providing excellent feedback. This work is
supported by NSF Grant 1117161, Grant 1343947, and
Grant 1040838.

7. REFERENCES
[1] CISCO: Per packet load balancing. http://www.cisco.

com/en/US/docs/ios/12_0s/feature/guide/pplb.html.
[2] A. Agache and C. Raiciu. GRIN: Utilizing the empty

half of full bisection networks. In Proc. of HotNets,
2012.

[3] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable,
commodity data center network architecture. In Proc.
of SIGCOMM, 2008.

[4] M. Al-Fares, S. Radhakrishnan, B. Raghavan,
N. Huang, and A. Vahdat. Hedera: Dynamic flow
scheduling for data center networks. In Proc. of NSDI,
2010.

[5] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye,
P. Patel, B. Prabhakar, S. Sengupta, and M. Sridharan.
Data Center TCP (DCTCP). In Proc. of SIGCOMM,
2010.

[6] M. Alizadeh, S. Yang, M. Sharif, S. Katti,
N. McKeown, B. Prabhakar, and S. Shenker. pFabric:
Minimal near-optimal datacenter transport. In Proc. of
SIGCOMM, 2013.

[7] T. E. Anderson, S. S. Owicki, J. B. Saxe, and C. P.
Thacker. High-speed switch scheduling for local-area
networks. ACM Transactions on Computer Systems
(TOCS), 11(4):319–352, 1993.

[8] W. Bai, L. Chen, K. Chen, D. Han, C. Tian, and
H. Wang. Information-agnostic flow scheduling for
commodity data centers. In Proc. of NSDI, 2015.

[9] T. Benson, A. Akella, and D. A. Maltz. Network

traffic characteristics of data centers in the wild. In
Proc. of IMC, 2010.

[10] A. Dixit, P. Prakash, Y. C. Hu, and R. R. Kompella.
On the impact of packet spraying in data center
networks. In Proc. of IEEE INFOCOM, 2013.

[11] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula,
C. Kim, P. Lahiri, D. A. Maltz, P. Patel, and
S. Sengupta. VL2: A scalable and flexible data center
network. In Proc. of SIGCOMM, 2009.

[12] C.-Y. Hong, M. Caesar, and P. B. Godfrey. Finishing
flows quickly with preemptive scheduling. In Proc. of
SIGCOMM, 2012.

[13] A. Munir, G. Baig, S. M. Irteza, I. A. Qazi, A. X. Liu,
and F. R. Dogar. Friends, not foes: Synthesizing
existing transport strategies for data center networks.
In Proc. of SIGCOMM, 2014.

[14] J. Perry, A. Ousterhout, H. Balakrishnan, D. Shah, and
H. Fugal. Fastpass: A centralized "Zero-Queue"
datacenter network. In Proc. of SIGCOMM, 2014.

[15] G. Porter, R. Strong, N. Farrington, A. Forencich,
P. Chen-Sun, T. Rosing, Y. Fainman, G. Papen, and
A. Vahdat. Integrating microsecond circuit switching
into the data center. In Proc. of SIGCOMM, 2013.

[16] C. Raiciu, M. Ionescu, and D. Niculescu. Opening up
black box networks with CloudTalk. In 4th USENIX
Conference on Hot Topics in Cloud Ccomputing, 2012.

[17] B. Vamanan, J. Hasan, and T. Vijaykumar.
Deadline-aware datacenter TCP (D2TCP). In Proc. of
SIGCOMM, 2012.

[18] C. Wilson, H. Ballani, T. Karagiannis, and
A. Rowtron. Better never than late: Meeting deadlines
in datacenter networks. In Proc. of SIGCOMM, 2011.

[19] A. Yaar, A. Perrig, and D. Song. SIFF: A stateless
internet flow filter to mitigate ddos flooding attacks. In
IEEE Symposium on Security and Privacy, 2004.

http://www.cisco.com/en/US/docs/ios/12_0s/feature/guide/pplb.html
http://www.cisco.com/en/US/docs/ios/12_0s/feature/guide/pplb.html

	Introduction
	pHost Overview
	Modern Datacenter Networks
	Basic Transport Mechanism
	Why pHost works

	Design Details
	pHost Source and Destination
	Maximizing Network Utilization
	Local Scheduling Problem
	Handling Packet drops

	Evaluation
	Test Setup
	Performance Evaluation Overview
	Varying Metrics and Scenarios
	Flexibility

	Related Work
	Conclusion
	References

