Teaching Statement
Akshay Narayan

I believe teaching, interpreted broadly to include not only formal classes but also mentorship, scientific
communication, and interdisciplinary collaboration, is a crucial part of practicing computer science re-
search. Especially given the impact my mentors have had on my research career, I know firsthand the
positive impact a community of mentors can have.

Teaching Philosophy. I argue that teaching systems courses should include not only technical instruction
on algorithms, protocols, and interfaces, but also technical writing skills, especially comparatively evalu-
ating systems quantitatively and qualitatively. For example, in a computer networking class focusing on
congestion control, I would pose a hypothetical situation to students with an application (say, a file trans-
fer server running in AWS’s us-east-1 datacenter) and ask them to write an essay arguing for the adoption
of one of a list of congestion control algorithms using both quantitative evidence and qualitative analysis.
This type of assignment is a valuable and under-used complement to traditional implementation-focused
assignments that canonically focus on understanding how an algorithm works. Rather, understanding that
each system and protocol comes with trade-offs that are appropriate in different scenarios is an important
concept for computer scientists to learn.

Further, my research observes that networks increasingly provide specialized features, and I thus be-
lieve that teaching systems and networking should reflect this. While traditional architectural principles
(layering, the end-to-end principle, etc) are important concepts for students to understand, it is also impor-
tant to understand the way modern systems depart from the conventional model. To this end, project-based
learning helps students understand how layering and abstractions are a core part of building modern ap-
plications. To become effective computer scientists, students today must learn how to decompose complex
applications into individual sub-systems, and understand how to approach building each sub-system by
composing available libraries and new code. Similarly, students should learn how to develop libraries and
services that compose well with other components as parts of a larger application.

Teaching Plans. At the undergraduate level, I would teach an undergraduate networking course focusing
on the Internet architecture, design decisions, and core protocols. At the graduate level in networking, I
would teach two classes: one on bandwidth allocation systems, covering congestion control, adaptive bit-
rate algorithms, traffic engineering, virtual networking, and capacity planning, and another on network
stacks, covering implementing transport protocols efficiently, middleboxes, and datacenter networking. I
would additionally be comfortable teaching classes on cloud computing and networked systems at both the
undergraduate and graduate level. My undergraduate-level class on this topic would teach students how to
design protocols and abstractions for both usability and performance (e.g., by collaboratively implement-
ing a microservice application as a class project), how to instrument and analyze systems to determine
their performance bottlenecks, how and when to use parallelism and concurrency primitives and imple-
mentation patterns in systems programs, and how to analyze tail performance separately from median
performance. These are abstract technical skills that future application developers would readily put into
practice.

Classroom Experience. I have been a TA for multiple computer networks classes between UC Berkeley,
MIT, and IIT Madras. The Berkeley class was senior-undergraduate level, the MIT class was graduate
level, and the IIT Madras class was a monthlong research seminar. At Berkeley, I taught weekly discussion
sections for 20-30 students (in addition to traditional office hours), which included diving deeper into
concepts discussed in lecture and working through a practice exercise to deepen students’ understanding
that the TAs took turns creating. For both the Berkeley and MIT classes, I helped develop and evaluate



Akshay Narayan - Teaching Statement

homework assignments and exams. For the IIT Madras seminar, I was responsible for preparing students
to give class presentations about each week’s papers—ensuring that they understood each paper’s core
concepts—and helping lead classroom discussions.

Comparing and contrasting the two semester-long classroom teaching experiences was edifying for
me: I came to appreciate the impact of small-scale learning, not only in office hours but also in discus-
sion section. I also came to appreciate the value of hands-on “active” learning through course projects.
These helped students grasp the underlying principles more strongly than lectures or paper reading and
discussion. For example, for the graduate networking course at MIT I designed a project in which I used
my research system, CCP, to expose students to actually implementing congestion control algorithms that
could run on real networks. The key challenge in designing this assignment was ensuring that students
could reason about the specific teaching objective—designing their own congestion control algorithm-in
isolation, without dealing with other confounding factors. I also asked students to write a report describing
their CCA and its tradeoffs. I believe writing and running real code and seeing its impact on the instru-
mentation I designed gave students a better understanding of how congestion control works than simply
listening to the abstact models we must present in lectures.

Mentorship. There are four types of mentorship I believe are important and have engaged in. The first is
traditional long-term mentoring of junior researchers. Through my experience mentoring multiple such
individuals, I have found that the best policy is to follow my colleague’s interests to ensure they are pas-
sionate about their work. For example, one student I worked with from her third year of her undergradu-
ate degree until she finished her MEng degree initially started by working on a well-defined small project:
building an eBPF-based datapath for CCP. Over time, we realized together that this project (which required
significant work with the internals of the Linux networking stack) was not best aligned with her interests,
and I worked with her to find a new project with another student in the group, and joined that project to
continue to advise her progress. In the end, her master’s thesis focused on measuring the quality of drones’
cellular network connections. Working with this colleague gave me valuable new exposure to a new area
of research I had little prior experience with. Ultimately, this student joined a quantitative trading firm.

While it is important to follow a mentee’s interests, it is important to teach scientific rigor. For example,
when the onset of the pandemic interrupted our experiments, my mentee’s inclination was to end the
project with the data we had already collected, but I convinced her that changing the focus of the project
slightly would allow us to complete it without compromising the thesis’s results. For another graudate
student mentee struggling to make progress on a different project, I emphasized that it is important to
understand how each experiment fits into the larger goal of a project.

The second form of mentorship I have enjoyed is cross-disciplinary collaboration. For example, I
have contributed to a project led by a junior graduate student from the programming languages com-
munity which focuses on synthesizing congestion control algorithms. I enjoyed mentoring this colleague
and teaching congestion control concepts, and similarly learning about state-of-the-art program synthesis
techniques from her. I will encourage my own students to pursue this form of collaboration.

The third form of mentorship is outreach within the academic community, which targets not only
junior researchers but everyone in the field. In my case, after winning the EuroSys best artifact award I
took the opportunity to publish a post on the SIGOPS blog detailing how to create great research artifacts.

Finally, I believe short-form mentorship can help students become accustomed to implicit expectations
present in our field. To this end I have participated in and helped run MIT EECS’s student-led Graduate
Application Assistance Program (GAAP), in which applicants from under-represented groups can receive
one-on-one feedback on their graduate school application package. Throughout the semesterlong pro-
gram, I taught my mentee how to tell a coherent story about her research experience. She eventually
joined a top graduate program in EECS. I joined the program’s executive team in its second year, and it
has since flourished into a well-regarded source of graduate application feedback in EECS.



