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Abstract
In this paper we motivate and present Turbo, a new dat-
acenter transport protocol that is designed very low BDP
environments in mind. At such low BDP, Turbo delivers
perfect utilization while also minimizing average flow
completion times for all flows, whether short or long.
More importantly, Turbo delivers this minimized average
flow completion time in a reliable and predictable fash-
ion. Turbo is based on a simple idea - namely, that flows
should simply send all the time while carrying a priority,
and all congestion control should be decoupled from rate
control and done entirely in the network using priority
queues. We show through extensive experimental data
that Turbo achieves its designed goals of predictability
and good performance.

1 Introduction

Contemporary datacenter network workloads consist pri-
marily of various requests and responses among both in-
ternal servers and to the end hosts. Applications common
in a datacenter network tend to be heavy-tailed [1, 2];
that is, most of the flows are short flows, but most of the
bytes sent across the network belong to the small num-
ber of long flows. This leads to scenarios in which FIFO
queueing can lead to disastrous performance on metrics
such as the mean slowdown, which measures the mean
of how much greater a flow’s completion time in the net-
work compared to the “Oracle FCT” - that is, what it
would have been had no other flows existed. The mean
slowdown metric is especially affected in networks with
FIFO queues because the multitude of packets from the
long flows can cause prolonged queueing delay for the
few packets from short flows. Since the short flows have
a low oracle FCT, the queueing delay affects them espe-
cially. So, we conclude that FIFO queues are not appro-
priate for our purposes.

Meanwhile, link latency in a datacenter network can
theoretically approach 1 microsecond [3], but in practice
is usually up to three orders of magnitude slower. This
high latency is caused by queueing delays experienced
by each packet at times of heavy traffic and congestion.
The negative effects are most evident when a packet is
enqueued into a large buffer, where it must wait for a
large and, more importantly, highly variable amount of

time while until it is selected for dequeuing. This obser-
vation paved way for the conjecture that it is possible to
achieve a very low latency datacenter network by reduc-
ing the internal switches’ buffer size. If link latency is set
to 1 or 2 microseconds and link bandwidth is a standard
10 Gbps, the bandwidth-delay product (BDP) of the link
approaches one or two packets. Buffer sizes should then
also be set to approximately one or two packets. Thus we
reach our second conclusion in the motivation of Turbo;
namely, achieving an ultra low latency network requires
minimal switch buffering.

Attempting to use another tried and tested tool of net-
working, TCP congestion control, is similarly detrimen-
tal to flow completion time in the context of datacenter
networks. While congestion control is necessary in order
to keep the network functional, Most existing congestion
control proposals fall under two categories. Proposals in
the first category explicitly compute and assign appro-
priate rates to all flows based on some parameters and
certain intrinsic informations of those flows, say size or
deadline. In contrast, proposals from the second category
implicitly allocate rate to the flows yet also alter them
dynamically upon congestion signals or other event no-
tifications. However, all existing proposals rely on some
form of rate control as the basic mechanism. We find that
rate based congestion control in datacenters leads to star-
vation scenarios in which the flows are unable to react
quickly to current network conditions. The final motiva-
tion for Turbo, then, is a desire to move away from rate
based congestion control.

The goal of the paper is to design a simple conges-
tion control algorithm that makes flow completion time
minimal and predictable. Our work is primarily inspired
by the pFabric [4] transport protocol proposal, which is
characterized by the use of priority queues in the net-
work. In short, pFabric approximates a global shortest
remaining processing time (SRPT) algorithm by setting
a packet’s priority to be equal to the remaining size of its
flow. However, pFabric, in keeping with other contempo-
rary congestion control mechanisms, also relies on rate
control to prevent congestion collapse. Unfortunately,
this reliance on rate control leads to starvation, which
negatively impacts performance.

Turbo departs from pFabric’s example a few important
ways. Most importantly, rate based congestion control
is abandoned entirely; all flows send at line rate. Con-
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gestion control is accomplished entirely using priorities.
Like pFabric, packet drops are detected using timeouts
alone. When a packet drop is detected, the priorities of
subsequent packets of that flow are artificially inflated
to make packets of that flow more likely to be dropped.
The intuition is that some other flow of higher priority is
consuming resources along the flow’s path, so the flow
should back off in order to avoid wasting resources that
could be used by other flows whose paths are free.

We have performed extensive experimentation on both
the pFabric and Turbo designs. The results support the
hypothesis that pFabric leaves room for improvement in
the low BDP scenarios we are concerned with. Mean-
while, the Turbo design has been plagued with some in-
efficiencies that we will discuss in section 4.

We provide background survey on our problem in Sec-
tion 2 concluding that the state-of-the-art proposal to
achieve small flow completion times is pFabric. Anal-
ysis on pFabric’s design and performance drawbacks is
provided in Section 3. Section 4 presents the discussion
of the main Turbo implementation and design choices,
while simulation detail and experimental results are dis-
cussed in Section 5.

2 Background

In order to highlight the differences and challenges that
datacenter networks pose, in this section, we character-
ize them, both in terms for network topologies and traffic
patterns. We highlight various research proposals to un-
derstand the different types of problems in this setting.

2.1 Datacenter Network Characterizations

2.1.1 Topology

Today, Fat-tree/Clos topology [5, 6] is the most common
datacenter network topology [4]. These topologies are
able to provide full-bisection bandwidth by using multi-
ple roots for the tree (the core switches) which are con-
nected to the top-of-rack switches either directly or hi-
erarchically through aggregation layers. These networks
are also able to push congestion to the edges, in that there
are very few drops in the core of the network [7, 2]. This
also makes the network amenable to be approximately
modeled as a bipartite graph, where the congestion only
happens at the edges.

2.1.2 Latency

Round-trip latency in data centers is going down at a fast
paced. This is attributed both to increasing link capac-
ities (10Gbps is now common in deployments at Bing,
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Figure 1: CDF of flow sizes and of total bytes from three
different datacenter workloads

Facebook and Google) [8, 9], decreasing switching de-
lays and the increasing popularity of cut-through switch-
ing [10], and improvements in the end-host stack [11,
12, 13]. It is envisioned that the next 5-10 years will re-
duce the round-trip time in data centers to 1-2 us [3]. At
10Gbps, this amounts to a bandwidth-delay product of
just one or two 1500-byte packets!

2.1.3 Flow Size Distributions

Numerous studies [2, 14, 1] have characterized traffic
patterns inside the datacenter network. Flow-size distri-
butions are found heavy-tailed in almost all the studies
that have been undertaken to characterize such networks.
To illustrate, we present the CDF of flow sizes as well
as the CDF of total bytes in three datacenter workloads,
namely from the Bing web-search cluster [1], Datamin-
ing cluster at Microsoft [4] and another workload from
a Microsoft cluster [2], called Aditya henceforth. Fig-
ure 1 illustrates the CDF of flow sizes and of total bytes
across these three datacenter workloads. All three work-
loads exhibit a common trend, where most of the flows
are small, e.g., 80% of the flows in the Aditya workload
are smaller than 6 packets (∼ 9KB), whereas most of the
bytes lie in the long flows, e.g., 90% of the bytes are at-
tributed to the 10% longest flows. This entails that most
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of the congestion are caused by these long flows and the
short flows, if allowed to run by themselves in the ab-
sence of large flows, would perform near-optimal.

2.2 Traffic Engineering inside the Datacen-
ter

Multiple proposals have called the need to engineer
traffic to take paths in order to alleviate network
hotspots [15, 14]. This is facilitated by having multi-
ple paths between a source and destination owing to the
prevalent clos-topologies in today’s datacenter networks.
However, such schemes are only able to work at longer
time-scales and do not safeguard against burst conges-
tion. Further, when the bandwidth-delay product of the
network becomes just a couple of packets, such scenarios
are bound to become more common.

2.3 Better Transport Mechanisms
To achieve low-latency, another thread of proposals has
been to optimize at the transport layer. Datacenter TCP
(or DCTCP) [1] is a transport-layer protocol that offers
TCP-style fairness whilst limiting the inherent bursti-
ness of TCP. TCP’s burstiness is owed to drastic adjust-
ments to a flow’s rate on timeouts and duplicate acks.
DCTCP uses ECN marking and does gentler adjustments
to the rate which helps keeping the queues small. Fur-
ther, lower queueing delays enable short flows to finish
quickly. To optimize on flow completion times and fa-
cilitate flows from interactive services to meet the tight
deadlines imposed on them, numerous proposals have
propagandandized the need for deadline-aware schedul-
ing in the network. D2TCP [16] is a modification of
DCTCP that adjusts congestion window based on the
flow’s deadline.

2.4 Better Switch Fabrics
Switch architecture have received considerable attention
both in the research community and the industry. While
cut-through switching has started becoming very pop-
ular [10], a number of research articles have called to
do better flow scheduling in the switch fabrics. D3 [17]
tackles the problem of meeting flow deadlines by making
switches explicitly reserve bandwidth for flows so that
they can meet their deadlines. PDQ [18] tracks the active
flows at a switch and schedules the ones with the earli-
est deadline (or smallest remaining size) while stopping
the remaining flows to meet deadlines (or minimize flow
completion time). The state-of-the-art in such protocol
has been pFabric [4] which makes the switches do prior-
ity scheduling and dropping and using a minimal TCP-
based transport protocol at the edge to achieve low flow-
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Figure 2: At 0.8 load, drop rates are astronomical for long
flows in both the Bing and Aditya workloads. The y axis
shows the percentage drop rate on a log scale.

completion times. The priority based switching fabric
priorities flows in the order of remaining flow size. As
we later show, this can result in extremely high drop rates
for long flows, which along with TCP’s aggressive han-
dling of losses can lead to potential starvation scenarios.

2.5 End to End Inefficiencies

Irrespective of how well the network does flow schedul-
ing, end-hosts can put a heavy burden on network la-
tency [13, 19]. Much work has been done to optimize
the end-host stack so as to rid it of the numerous ineffi-
ciencies that current stacks are plagued with [20, 21].

3 Potential For Improvement

We have found that the pFabric protocol, the current state
of the art, performs poorly under the low BDP conditions
with which this paper is concerned. The pFabric proto-
col sets packet priorities to be equal to the number of
bytes remaining in the flow; that is, the number of bytes
in the flow that have not yet been acked. The size of a
switch queue is set to twice the BDP number of packets.
When a packet arrives at a switch queue, it is added to
the queue if the buffer is not full. Otherwise, the packet
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(c) DataMining

Figure 4: Under 0.8 load, the network is flooded by packets from long flows which are starved by higher priority short
flows. These results are for a 1 million flow simulation.
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Figure 3: Even at 0.6 load, both the Bing and Aditya work-
loads experience high drop rates for the long flows. The y
axis shows the percentage drop rate on a log scale.

with the least priority in the queue - in other words, the
packet from the flow with the most bytes remaining - is
dropped. When the queue is dequeuing, the packet with
the greatest priority - in this case, the earliest packet from
the flow with the least number of remaining packets - is
sent. In this way, pFabric queues perform an approxima-
tion of SRPT scheduling.

pFabric’s sole recovery mechanism is timeout-based.
The timeout for a given packet is set to 3*RTT. While
the initial CWND is set to be equal to the BDP so that
flows start out sending at line rate, after a timeout this is
abandoned and flows fall back to normal TCP slow start.
Ergo, pFabric relies on rate control as its congestion con-
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Figure 6: Even at 0.7 load, the datamining workload cre-
ates a starvation scenario.

trol mechanism.
Since pFabric sets its queue size to be twice the BDP,

in the low BDP scenarios with which we are concerned
the queue size used by pFabric becomes quite small. In
such situations, we have found that pFabric performs
poorly because it starves long flows while servicing short
flows. In distributions that are more heavy-tailed - that is,
most flows are short but most bytes are part of long flows
- pFabric performs especially poorly as the large number
of short flows continually interrupt the long flows from
making significant progress. In experiments we ran, long
flows tended to only finish once the short flows had been
drained from the network. This draining of the short
flows probably would never occur in real-world condi-
tions since a short flow that finished could trigger the for-
mation of other short flows. The relentless onslaught of
short flows would cause the long flow to be completely
starved.

This finding can be seen in figures 2 and 4. Figure
2 shows the drop rates of large flows under a workload
gathered from the Bing Datacenter. Note that the drop
rate for the largest group of flows surpasses an astound-
ing 45,000 percent. Figure 4 shows that pFabric is in-
deed starving the long flows by charting the number of
outstanding packets - that is, the sum of the amount of
unacked bytes from all flows that have already started
but have not yet finished. As can be seen, the number of
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Figure 5: Even under a lower 0.6 load, the most heavy-tailed workload creates a starvation scenario for the long flows.
Under the Bing and Aditya workloads, the simulation is not a starvation scenario. These results are for a 1 million flow
simulation.
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Figure 7: pFabric performs quite far from the ideal for long flows.

outstanding bytes steadily increases until the the very end
of the simulation. This supports the conclusion that the
short flows are starving the long flows, since bytes from
teh long flows are building up as outstanding packets in
the network.

As a result of this starvation, performance on both the
average flow completion time metric as well as the mean
slowdown metric were significantly worse than ideal for
long flows. This is because the high drop rates for
long flows cause them to continually re-enter Slow Start,
and each timeout incurred will decrease SSTHRESH. As
SSTHRESH decreases, the CWND size also decreases.
Therefore, when the long flow finally encounters a situ-
ation in which the network is temporarily clear of short
flows that would interrupt it, the long flow is unable to
take advantage of the available network resources and
must increase its CWND size through AIMD, which is
quite slow. In other words, inefficient rate control pol-
icy prevents pFabric from achieving better performance.
Therefore, a key insight of this paper is that rate control
is completely unnecessary in order to achieve congestion
control, and in fact amplifies the deleterious effects of
starvation on long flows. Rather, Turbo abandons rate
control entirely and simply performs congestion control
using priorities alone.

4 Turbo Design

The basic principle of Turbo is that all flows should send
at line rate all the time, setting priorities in such a way
that priority queueing will be sufficient to prevent con-
gestion collapse. Turbo has the following characteristics:

(1) Flows always send at line rate while they have data
to send. This trivially guarantees perfect utilization.

(2) The only recovery is through timeouts. Duplicate
ACKs are ignored (although TCP SACK is used),
and there is no Fast Recovery or Slow Start.

(3) Packet priorities are set to the remaining flow size in
order to approximate SRPT scheduling. Queues in
the network implement flow-level priority dequeue-
ing: after determining the packet with the highest
priority, the packet in that flow with the least se-
quence number is dequeued. Queues also imple-
ment priority dropping, meaning that if a packet be-
ing enqueued causes the queue to overflow, the least
priority packet is dropped.

(4) Since ACKs are so small (only 40 bytes), their in-
teraction with data packets is minimal. It is however
important to ensure that the signal that the network
is clear is returned to a flow’s source posthaste. As
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Figure 8: Dead Packets scenario. The priority 11 flow is
prevented from doing useful work, even though that is the
optimal scheduling.

a result, ACK packets are always sent at the highest
priority.

For Turbo’s predictability goals, we take advantage
of the fact that using priority queueing means that an
important packet with higher priority will suffer almost
no queueing delay, since as soon as it is enqueued it
will be the packet in the queue with the highest prior-
ity, and will thus be immediately dequeued. Therefore,
this lack of queueing delay for high priority packets leads
to both lower latency for such packets as well as more
predictable performance. More predictable performance
allows us to use tight timeouts, which speeds recovery.
These benefits apply not only short flows with high pri-
ority but also long flows with low priority. Since packets
from low priority flows will be dropped in encounters
with high priority packets, tight timeouts can apply to
low priority packets as well. Since queue sizes are small,
the packet will only have gotten through if the network
was completely clear, in which case it would suffer no
queueing delay. In other words, it is far more likely for a
given low priority packet to be dropped or delivered with
little or no queueing delay than it is for such a packet
to suffer large amounts of queueing delay before being
dropped. This is especially true in the low-buffer scenar-
ios for which Turbo is designed.

It is important to note that this guarantee of pre-
dictability requires priority queueing, since FIFO queues
are highly unpredictable. Especially since most of the
bytes in the network belong to the low priority long
flows, it is probable that high priority packets from a
short flow are enqueued behind low priority packets from
a long flow on a regular basis. This would disastrous for
the mean slowdown metric, which is especially sensitive
to short flows since short flows have extremely low ora-
cle flow completion times. Therefore, FIFO queues are
unusable for our purposes.
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Figure 9: Artificially inflating the priority of a flow on a
timeout alleviates the problem.
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Figure 10: The duplicate packets problem: packets from
a lower priority long flow time out while stuck behind a
higher priority short flow.

4.1 Sources Of Inefficiency

There are two primary sources of inefficiencies in the
use of Turbo. The first is zombie packets, which are a
type of dead packet. Dead packets are packets that have
consumed resources along the network up to a point,
but are then dropped, letting the already-consumed re-
sources go to waste. Zombie packets are dead packets
that cause harm to other flows by blocking resources that
they would have used. This is illustrated in figure 8. Ini-
tially, there are two flows of priority 10, A and B, and one
flow of priority 11, C. The flow C’s packets are dropped
since they collide with packets from flow B. Then, a flow
of priority 5, D, interrupts the transmission of both of
the priority 10 flows A and B. One flow A is dropped
near its source - this flow comprises of dead packets since
its packets do not interfere with the transmission of any
other flow. However, B, the other priority 10 flow, is
dropped near its destination. Therefore, the flow C is
still dropped, even though the flow blocking it is also
being dropped. So, the packets of flow B are called zom-
bie packets because they result in an inefficiency in flow
scheduling.

To alleviate this situation, Turbo adjusts the priority
of a flow that incurs a timeout to be inflated 1 above the
usual remaining flow size based priority. To return to
the example above now seen in figure 9, when flow D,
with priority 5, preempts flows A and B, the end result

1Priority is set to the remaining flow size, so in this case a lower
numerical priority is “better” - it will increase the packet’s chances of
being transmitted. Hence, an “inflated” priority is one that is worse
than it would normally be.
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for flow A is the same; it is dropped near its source and
doesn’t consume network resources. For flow B, how-
ever, the inflated priority will make flow C be preferable
to flow B. Therefore, flow B will also be dropped near its
source, and the network is able to make progress on both
flows D and C. However, once flow D has finished block-
ing the paths of flows A and B, we want both these flows
to rapidly resume sending at their real priority; this is un-
likely if the flow is sending with artificially bad priority.
Therefore, to aid in quick recovery, flows that have suf-
fered a timeout and sending at inflated priority will peri-
odically send out probe packets, which are very small so
as to barely consume any network bandwidth, and which
carry the real priority of the flow to determine whether
the path is clear. If a probe successfully gets through, a
flow immediately resets its priority to its true value.

The second primary source of inefficiency is the dupli-
cated packets problem, as illustrated in 10. This stems
from the fact that in certain cases, it is possible for a
small number of packets to get stuck in a queue while
packets from higher priority flows are dequeued. Due
to the tight timeouts used, this leads to a timeout for
that flow, even though its packets have not been dropped.
This timeout leads to the flow needlessly retransmitting
the stuck packets and thus wasting network bandwidth.
This problem is both rare enough that simply increas-
ing the timeout value would have negative effects, and
harmful enough to flow performance that it should be
addressed. In a FIFO queue, this problem is not present
because there is inherently a guarantee that packets will
move forward in the queue and eventually be dequeued,
which makes it possible to reason about queueing de-
lays and set overall timeouts appropriately. Unfortu-
nately, FIFO queues are undesirable for our purposes as
discussed above; in order to guarantee the highest level
of performance for short flows, priority queues must be
used. A solution to the duplicate packets problem in pri-
ority queues remains an open problem.

4.2 Design Options

There are three main parameters available in the Turbo
protocol for addressing these inefficiencies. These are
the amount of inflation a flow incurs on a timeout, the
sending frequency of probe packets while in the inflated
state, and finally the policy of how to set timeouts. There
are a number of logical choices available for these pa-
rameters, and we discuss them below. Discussion of their
performance is left to Section 5.

In the first option, timeouts are set for groups of pack-
ets. If a new ack is received, the timeout is updated to
be calculated from the sending time of the next packet
sent (which the same as the time at which the ack was
received assuming no host delay). If a timeout occurs,

the timeout is updated similarly. This scheme is called
“simple-timeouts”. Meanwhile, probes are sent when-
ever a timeout occurs. On a timeout, a flow inflates its
priority under the scheme called “cliff-inflation”. A flow
using cliff inflation will, after a timeout occurs, increase
its priority to be (INT MAX/2 + remaining flow size).
This way, two classes of flow priorities are created: the
first consists of flows that have not incurred timeouts and
are sending at their true priority: their remaining flow
size. The other class of flows has a much higher priority,
since INT MAX/2 is used as the base priority. There-
fore, this second class of flows does not cause any drops
to flows in the first class. Furthermore, flows within the
second class can also be differentiated since their priority
is still a function of the same remaining flow size vari-
able.

As an extension of cliff inflation, we also found it
worthwhile to experiment with an extension of this con-
cept by implementing a version of Turbo that ceases all
sending of data packets upon a timeout. This extra con-
servative “stop-on-timeout” is our second option which
still uses probes on each timeout to determine whether to
start up again.

An alternative to the simple timeouts scheme is to use
the cliff inflation and probing schemes with “Per Packet
Timeouts” instead. In the per packet timeout scheme, a
timeout is maintained for every packet that is sent. If an
ack for that packet is received, the timeout is cancelled
and the timeout on the next sent packet becomes active.
If a timeout occurs, the packet in question is retransmit-
ted, along with any other packets that are not acked and
not already in flight, or in other words sent but not yet
timed out or acked. This per packet timeout scheme is
meant to take advantage of the tight timeouts made pos-
sible by Turbo. This may result in every dropped packet
resulting in a probe being sent, resulting in a large num-
ber of probes being sent by flows in the inflated state.
Even though probe packets are extremely small and con-
sume minuscule amounts of network bandwidth, the pos-
sibility remains that they can contribute to the dad pack-
ets problem. Therefore, we add a guard that the probes
are sent at least one retransmission timeout apart. This
becomes our third option.

5 Evaluation

Our goal in the evaluation is to understand how the differ-
ent approaches outlined in Section 4 perform. The met-
rics we are interested in are mean slowdown, which is a
measure of latency since it is dominated by the perfor-
mance of short flows, as well as average FCT, which is a
measure of throughput since it is dominated by the per-
formance of the long flows. This is because of the inher-
ent heavy-tailed nature of the datacenter network work-
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Figure 11: The topoplogy used in our experiments.

load, where most of the flows are small while most of the
bytes reside in the long flows.

5.1 Methodology
5.1.1 Topology

Our experiments were performed on the same topology
used in the evaluation of pFabric (seen in figure 11 -
there are 144 hosts connected in groups of 16 to 9 top
of rack (tor) switches and 4 core switches in a full mesh
topology as shown in Figure 11. The bandwidth between
the hosts and the tor switches was 10 Gbps, and the band-
width in the core was 40 Gbps. Finally, the link latency
was 0.2 microseconds. This means that the BDP of the
network is (0.2×10−6s×10×109 bits

s )≈ 2 packets. The
RTT ≈ 4 microseconds: (0.2)×4+ 1460∗8 bits

10×103 bits per µs ×2+
1460∗8 bits

40×103 bits per µs ×2 ≈ 4µs.

5.1.2 Simulators

We ran our experiments in both ns2 [22] as well as our
own simulator designed to be faster and more flexible
than ns2 as well as handle experiments ns2 could not, for
example very large experiments which took prohibitively
lengthy amounts of time to complete in ns2. Our packet
simulator is event based, and is implemented in approxi-
mately 2500 lines of C++ code.

5.1.3 Workloads

As mentioned before, we use three datacenter workloads
namely Bing, Aditya, and DataMining for our evalu-
ations. We assume that the inter-arrival times are dis-
tributed as per a poisson distributed whose parameter
is set to achieve a desired network load. This arrival
process is per source-destination pair. The DataMining
workload is the most heavy tailed of the three workloads.

5.2 Performance

We were interested in the two metrics: average flow com-
pletion time and mean slowdown. To better understand
why one proposal works better than the other, we seek to
also understand the causes for inefficiency – fraction of
dead packets and duplicate packets in the network. The
latter two metrics give insight into starvation of flows
and the stability of the network. The measurement of
average flow completion time and mean slowdown were
computed naturally as part of the simulation using the
flow completion time of each flow in the simulation.

The dead packets percentage was calculated by mea-
suring the difference between the number of bytes sent
by hosts to the top-of-racks and the number of bytes re-
ceived by hosts from top-of-racks. If there were no dead
packets in the network, these two measurements would
be identical, since all packets sent by hosts would be re-
ceived by other hosts. However, in a dead packets sce-
nario, the number of bytes received by hosts is less than
the number of bytes sent. The dead packets percentage is
computed by dividing this difference by the total amount
of goodput, or, in other words, the sum of the size of all
the flows.

The duplicated packets number was counted at each
host. Whenever a host received a packet that it had
already received, it incremented its duplicated packet
counter. The overall duplicated packets percentage is
taken to be the sum of the duplicated packet counts
across all hosts divided by the goodput of the simula-
tion. Since ACK packets are sent at the highest priority,
it is extremely unlikely that an ACK is lost in the net-
work; therefore, any duplicated packet counted by our
methodology is almost certainly caused by a failure of
the network as discussed in section 4.

On the Aditya and Bing workloads, we ran experi-
ments using 200,000 flows at 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,
and 0.8 load for each of the 4 options presented above,
as well as with pFabric for comparison. For the param-
eters in the pFabric experiment, we used the values sug-
gested in the paper give our topology. Specifically, we
used an initial CWND of one BDP number of packets, or
4. We used a maximum CWND of 7 packets, equivalent
to twice the BDP. The buffer size was set to 12000 bytes,
or 8 packets, which is pFabric’s suggested 2× BDP, and
the timeout was 15 µ s, or approximately 3× RTT.

For the parameters for the Turbo options, we used a
timeout of 9.5 µ s and a buffer size of 6200 bytes, or
approximately 4 packets (equal to the BDP). Since rate
control is abandoned in Turbo, the CWND value was ir-
relevant and therefore not set.

When evaluating pFabric, we found that pFabric does
indeed starve long flows, especially when the length of
the simulation is increased. In fact, for very long simu-
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Figure 12: CDF of flow sizes and of total bytes from three
different datacenter workloads

lations (more than 10 million flows), the pFabric simula-
tions do not even finish due to the huge amount of starva-
tion for the long flows. In other words, the abysmal per-
formance of the long flows is not isolated to those flows
alone, but rather causes the network as a whole to grind
to a halt. Note that we observed that the edge-utilization
in such cases was indeed 80%, so it was clearly the ex-
cessive backing off of large flows that was causing the
problem.

Figures 12a and 13 illustrate the performance of the
three schemes compared against pFabric.

Turbo still experiences a large number of dead-packets
as shown in Figure 13a. Our priority back-off scheme
should ideally lower the dead-packet number substan-
tially, but we are still investigating as to why the num-
bers look so worse. Further, as discussed before, the
timeout-setting becomes a challenging problem when
the network does priority scheduling and improper val-
ues can result in a large number of duplicated packets.
We observed that the number of duplicated packets was
substantially high in the per-packet timeout scheme as
shown in Figure 13b. We are currently investigating two
options to alleviate this problem, one where the timeouts
themselves are dependent on the priority of the flow, and
second where the the switch maintains a TTL per packet
and drops it if it is present too long in the queue.

However, the good news is that we were able to ob-
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Figure 13: CDF of flow sizes and of total bytes from three
different datacenter workloads

serve the trend that if we are able to lower the dead-
packet and duplicated packet number, and thus, we be-
lieve that through a careful protocol design, we should
be able to achieve extremely good performance.

6 Conclusion

While majority of the datacenter workloads are heavy-
tailed , current datacenter network protocols, using pri-
marily rate based congestion control algorithms, per-
form poorly with significant starvation problem and long
queueing delays. We therefore proposed Turbo, a con-
gestion control algorithm that is designed under low BDP
scenarios and solely depends on packets priority infor-
mation instead of flow rate assignments. Currently, there
are two inefficiencies of Turbo coming from the dead
packet and the duplicated problems that both contributes
to wasted resource in the network. Our future goal for
Turbo is to effectively and efficiently eliminate these in-
efficiencies.
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