
The Case for an Internet Primitive for Fault
Localization

William Sussman , Emily Marx , Venkat Arun , Akshay Narayan ,
Mohammad Alizadeh , Hari Balakrishnan , Aurojit Panda , Scott Shenker ♠

MIT, UC Berkeley, NYU, ♠ICSI
ABSTRACT
Modern distributed applications run across numerous mi-
croservices and components deployed in cloud datacenters,
using shared cloud services for computing and storage, edge
services such as content distribution networks, network
functions such as rate limiters and firewalls, security in-
frastructures, network routers, and physical links. When a
user-visible fault occurs, the first step toward diagnosis is
localization to determine where the fault has occurred. How-
ever, because application delivery spans different layers and
different organizations, no entity has complete visibility or
access to the information required to localize faults quickly.
This paper proposes a cross-layer, cross-domain, and cross-
application fault localization primitive with a simple and
standardized information interface for the Internet.

CCS CONCEPTS
• Networks → Transport protocols; Network design prin-
ciples; Programming interfaces; Cross-layer protocols;

KEYWORDS
Fault Localization

ACM Reference Format:
William Sussman, Emily Marx, Venkat Arun, Akshay Narayan, Mo-
hammad Alizadeh, Hari Balakrishnan, Aurojit Panda, Scott Shenker.
2022. The Case for an Internet Primitive for Fault Localization. In
The 20th ACM Workshop on Hot Topics in Networks (HotNets ’22),
November 14–15, 2022, Austin, TX, USA. ACM, New York, NY, USA,
7 pages. https://doi.org/10.1145/3563766.3564105

1 INTRODUCTION
Since the advent of the web (thirty years ago) and mobile
platforms (fifteen years ago), Internet applications have for-
ever changed the way we live, work, and play. People now
spend many hours everyday glued to their screens, so users

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
HotNets ’22, November 14–15, 2022, Austin, TX, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9899-2/22/11. . . $15.00
https://doi.org/10.1145/3563766.3564105

are keenly aware of, and highly sensitive to, glitches, faults,
and degraded app performance.
In response, application developers and operators have

instrumented their software to track performance issues and
faults [6]. Despite widespread instrumentation, logging, and
tracing in today’s software infrastructures, when a problem
arises, often neither the user nor the application operator can
identify what or where the problem is. Haven’t we all been
in videoconferences where someone freezes and everyone
wonders if it’s something at their end or elsewhere? These
problems will become even more acute in the future with the
promised proliferation of cyber-physical systems, networked
robotics, augmented reality, and more.

When a user sees a problem, their first instinct is to quickly
try to uncover what is wrong. The same is true when a
component of an application detects that something is amiss
from its monitoring: the first step to fixing the problem is
uncovering where the misbehavior is. That is the problem
we tackle in this paper: how to quickly localize a fault when
it manifests itself visibly.
Despite years, indeed decades, of work on detecting and

masking faults in distributed systems and applications (see
§5), fault localization for modern Internet applications re-
mains unsolved. Even when a simple fault such as a Wi-Fi
connectivity issue occurs, users are stymied, and even well-
resourced companies with experienced engineers don’t know
why user experience has degraded.

Why has it been difficult to identify which component is
faulty when a problem is observed? Our belief is that it is
because of the sheer number of things that must work prop-
erly for an application to function well. Today’s large-scale
applications are made up of many thousands of software
components often running as microservices. These microser-
vices run in virtual machines in cloud datacenters and use
the physical network through virtual switches and network
functions. Application components may be distributed across
different datacenters globally and across cloud providers, and
use components running in content distribution networks
(CDNs) at edge locations and on client endpoints. Errors
in any of these components, or in the myriad middleboxes,
firewalls, network routers, and links that connect them, can
lead to user-visible faults.
To locate an observed fault amidst this complexity, we

need a mechanism that is:

https://doi.org/10.1145/3563766.3564105
https://doi.org/10.1145/3563766.3564105

HotNets ’22, November 14–15, 2022, Austin, TX, USA Sussman et al.

• cross-layer, because a fault could occur anywhere from
the physical layer to an app-layer library,

• cross-domain, because most applications use services
across different organizations, and

• cross-application, because many components (e.g., the
network, middleboxes, cloud services, etc.) are shared
by many applications.

This brings us to our position statement: The Internet needs
a universal fault localization primitive that is cross-layer, cross-
domain, and cross-application. We propose such a mechanism
in this paper, which we call WTF.1 Our goal is to stir up a
debate about the value and practicality of creating a succinct
information interface to localize faults affecting networked
applications.

2 BACKGROUND
We start with some definitions. An element is any compo-
nent, system service, network function, or device that can
affect the observed behavior of a distributed application. A
node is a server or virtual machine (VM) where one or more
elements run. An application problem is a user-visible fault
and an element error is any anomalous behavior (e.g., crashes,
overloads, misconfigurations, etc.) of an element. We focus
on application problems resulting from one or more element
errors and ignore other sources of application problems such
as incorrect user inputs.

2.1 Localization Today
Trace analysis [6] is today a frequently used technique for
localizing problems in distributed applications. It requires
applications to record causal traces when processing re-
quests, for which developers insert tracing library calls into
their application components. Developers can use tools like
Dapper [7], Zipkin [23], and Jaeger [11] to analyze these
traces and identify faulty components. However, these traces
only provide application- and library-level (e.g., gRPC [9],
Thrift [26], etc.) information and do not include any infor-
mation about platform services or the network.
Recent work[4, 12, 18, 22] develops techniques for col-

lecting and analyzing traces from switches and other net-
work components. However, these network trace collection
and analysis tools do not provide sufficient information to
localize many types of faults. There are two reasons why.
First, these tools work at a single layer and cannot localize
faults across layers, as evidenced by two recent GitHub inci-
dents [13, 27]. Second, application-level trace analysis tools
require complete logs from, and semantic knowledge about,
all application-level elements. This assumption is impracti-
cal when using shared services managed by a cloud or edge
provider. While one work in network tracing [4] considers
elements (routers) across domains, it assumes that all routers
implement identical semantics.

1Where’s The Fault? (What did you think it stood for?!)

2.2 Example

We use an example to illustrate the challenges of cross-layer
fault localization. We consider a multiplayer game appli-
cation with two players (Player 1 and Player 2) streaming
their game play to audience members. Player 1 is running the
game on an instance provided by a cloud gaming service (e.g.,
Google’s Stadia, Microsoft’s Xbox Cloud Gaming, or Nvidia’s
GeForce Now), while Player 2 runs the game locally. Both
players are connected to a multiplayer game server. Player
1’s cloud gaming instance is also connected to a streaming
server, which transcodes game video and audio for audience
members.
Because many games require quick reactions from play-

ers, high latencies cause application problems. For example,
League of Legends, a popular multiplayer game, recently ran
into trouble because of a 20 ms latency difference between
two players [24]. Players might report a problem if there is a
noticeable lag between a player performing an action and its
effect becoming visible to other players. Audience members
might report a problem if the video stream lags or has low
quality.
Such problems can be caused by faults at either player’s

computer or network, Player 1’s cloud gaming instance, the
streaming server, or any of the routers and switches that
interconnect these nodes. Furthermore, the problem at a
node can be due to any of the elements running on the
node, including application code (e.g., the game, the game
client, or video streaming service), GPU drivers of the players,
audience members or gaming service, the hypervisor used
by the cloud provider, and network stack at any node.

Consider a problem where an audience member reports a
problem because the video and audio are out of sync. Let us
consider how different entities might localize the problem.
The streaming service provider can check if the problem is
caused by a fault in the video transcoding service or due to
problems with the stream received from the cloud gaming
service. If the problem is with the received stream, then the
streaming provider can do little more than inform the user
who must then ask the cloud gaming service. Here, the cloud
gaming service can only check if their streaming service is
working correctly, and if it is they must turn to the game de-
veloper or the several network providers involved to localize
the fault. The game developer can only localize problems in
the game server (probably by trawling through massive logs)
while each network provider can at best localize problems
caused by their own links, switches and routers. Therefore,
diagnosing this seemingly simple problem requires partic-
ipation from many entities, and for the user to coordinate
amongst them. Note also that the user does not have a com-
mercial relationship with every entity in the process.

The bottom line is that no single entity has complete visi-
bility into all the elements that might have caused the fault.

The Case for an Internet Primitive for Fault Localization HotNets ’22, November 14–15, 2022, Austin, TX, USA

(a) Elements record health using health bits.

(b) User reports application bug.

(c) Inspection protocol collects health bits that are in scope.

(d) Localization algorithm.

(e) WTF returns suspected elements to developer.

Audience

Client
Gfx

Player 1

Player 2

Game

Player
Net

Gfx
Stream

Cloud Gaming Service

Game Server
Net

Gaming Server

Transcoder
Net

Streaming Service

Vid. Player

Net

Client
Gfx Net

IP
WiFi

IP
Wired

Gfx Net

IP
WiFi

IP
Wired

IP
WiFi

IP
Wired

Audience

Client
Gfx

Player 1

Player 2

Game

Player
Net

Gfx
Stream

Cloud Gaming Service

Game Server
Net

Gaming Server

Transcoder
Net

Streaming Service
Vid. Player

Net

Client
Gfx Net

IP
WiFi

IP
Wired

Gfx Net

IP
WiFi

IP
Wired

IP
WiFi

IP
Wired

Audience

Gfx Net

Client
Gfx

Player 1

Player 2

Game

Player
Net

Gfx
Stream

Cloud Gaming Service

Game Server
Net

Gaming Server

Transcoder
Net

Streaming Service
Vid. Player

Net

Client
Gfx Net

IP
WiFi

IP
Wired

IP
WiFi

IP
Wired

IP
WiFi

IP
Wired

Gfx Net

Figure 1:WTF overview and example.

3 WTF OVERVIEW
WTF is our proposed cross-layer, cross-domain, and cross-
application fault localization mechanism. The key idea is for
each element to maintain and expose a succinct summary
of its state to aid fault localization. WTF does not focus on
after-the-fact forensics or fault debugging once its location
is identified.

3.1 Mechanisms
Our approach (Figure 1) requires that elements periodically
log a small amount of information, called health bits, about
their level of functioning. Health bits are a uniform and
simple representation of element status (errors) encoded in a
small number of bits (§4.1). They are tiny in size compared to
the full context of the element’s operational state to reduce
the amount of data we need to analyze when localizing a
problem.

The localization process collects health bits from elements
likely to have contributed to a user-visible problem and in-
fers the likely location of a fault. The key for making this
approach general—across applications, layers, and domains—
is for each element to determine its own health information
in any way it wants, but to use a standardWTF-defined inter-
face to provide this information to other interested elements
and entities. WTF specifies the form of health bits, but does
not specify how they should be set.

WTF has three mechanisms:
(1) A method that each element uses to periodically com-

pute and store health bits and a protocol to expose its
health bits to other entities using scoping rules under
its control (§4.1).

(2) A protocol to inspect health bits across one or more
elements to localize a problem (§4.2).

(3) A fault-localization algorithm that analyzes health bits
across the elements when a user or app component
notices a problem (§4.3).

In combination, these mechanisms are cross-layer, cross-
domain, and cross-application, making WTF quite general
in its applicability. However, WTF cannot localize all faults.
As we discuss in §3.2, we cannot (and do not) prescribe what
constitutes an element error, nor how an element sets its

health bits. Thus, WTF can only localize problems that a
user notices caused by faults that an element tracks. For
instance, WTF cannot localize errors resulting from incor-
rect assumptions made by one element about the semantics
of an RPC call made to another element. WTF is not de-
signed to work in the face of Byzantine faults. Furthermore,
WTF may not always precisely identify the root cause of a
problem and instead may return a small subset of potentially
faulty elements. Finally, becauseWTF assumes that elements
record health bits for a bounded time, WTF cannot be used
to localize faults that happened in the distant past.
Elements periodically maintain information about their

health (i.e., whether or not they have experienced any ele-
ment errors since their last report) and on their perceptions
about the health of other elements they interact with (e.g.,
whether they received an unexpected return value or did not
receive a response) using health bits. The decision of what
constitutes an element error and the reporting period are up
to the element’s developers and administrators.
WTF allows users, automated failure detectors, or other

entities to initiate localization (§4.3). In response, WTF runs
a fault-localization algorithm over the health bit histories
of the relevant elements used by the application. The main
challenge lies in identifying the subset of elements that might
have contributed to the problem whose health bits should be
inspected. We refer to the set of health bits that are relevant
to an application problem as the application problem’s scope.
Precisely identifying whether or not an element’s health bits
are within the scope of a problem requires additional context
(e.g., it might require a load balancer to record past decisions)
and can add to the size of the element’s trace (i.e., their recent
log of health bits along with the necessary context to help
the localization know if these bits are relevant).

WTF is designed to work on a variety of nodes including
network routers, where reducing trace size is desirable. On
the other hand, limiting the problems for which an element’s
health bits are in scope is necessary to minimize inspection
overheads, and to limit the amount of internal information
revealed by an administrative domain. WTF’s inspection
protocol may include elements not on the path of the fault.

HotNets ’22, November 14–15, 2022, Austin, TX, USA Sussman et al.

Finally, WTF passes the health bits collected to a local-
ization algorithm that then produces its output. While we
discuss how such an algorithm might work, our focus in this
paper is on defining health bits and the inspection protocol.
It is possible to develop several localization algorithms.

3.2 Design Principles and Implications
WTF is intentionally under-specified: it does not define what
constitutes an element error, how often an element should
generate health bits, or within what context (e.g., who the
element interacted with) the bits were generated. This lack
of specificity is not a matter of choice. While we would
like elements to report errors if and only if they caused ap-
plication problems, this is impossible to know in advance
because whether or not anomalous behavior at an element
leads to an application problem depends on the application’s
semantics. For example, an increase in network delay has no
user-visible impact on a text-messaging app, but can lead to
user-visible problems in a videoconference. However, many
elements, including the network, are shared between mul-
tiple applications and cannot make assumptions about the
applications that use them. Thus, WTF can neither provide
nor assume a precise specification for what an element’s
health bits denote.
WTF cannot specify the duration of time for which an

element’s health bits are stored, nor how much context is
included, since the cost of storage varies significantly across
node types and organizations. For example, most routers
have limited memory and storage capacity and cannot store
long histories, and network providers, a majority of whose
elements run on routers, might prefer storing short histories.
On the other hand, most cloud provider services run on
servers where storage is less expensive and storing long
sequences of health bits is cost-effective.
Our inability to tightly specify the emission of health

bits might seem unusual and might appear to run counter
to how systems are built today. We believe, however, that
a loosely-specified, universal mechanism to report status
(health bits) can be useful in practice because operators will
develop conventions and configure elements so that the bits
are set proportionate to the element’s health (e.g., a 2-bit
specification can go from “all good” to “fatal” with two levels
in between). This approach is similar to many successful In-
ternet protocols including IP and BGP, which include fields
with understated semantics and whose use has evolved and
is governed by conventions developed from practical ex-
perience. For example, while the 1-bit explicit congestion
notification (ECN) mark in packet headers is standardized,
each router can determine if it is congested using its own
algorithm; i.e., the bit is standardized, but the logic used to
set it is not. This method works because routers need only
agree that a set ECN bit means that “there is congestion”.
Similarly, we believe that health bits can be used to indicate
“directionally accurate” information about an element’s sta-
tus without standardizing or even revealing how the bits are
set.

4 DESIGN
WTF’s key design principle is that an element emits health
bits based on locally-observable information about itself and
its interactions with neighboring elements (a neighboring
element may be at a higher, lower, or peer layer). WTF col-
lects these health bits when an end-to-end fault is detected.
This triggers the system to identify a set of elements that
could have indicated the fault. We discuss three design chal-
lenges in makingWTF practical: how elements might choose
to emit bits (§4.1), how WTF can scope problems to a set
of health bits (§4.2), and how fault localization algorithms
might analyze health bit histories (§4.3).

4.1 Recording Element Health
To discuss how elements should emit health bits, we return
to the example in §2.2. Here, the videogame program devel-
oper can output health bits regarding the multiplayer game’s
state (e.g., by discretizing the players’ latency to the server
into health bits); the game streaming developer can output
health bits regarding contention for cloud resources; Internet
domains can output health bits regarding congestion; and
end-users’ home networks can output health bits regarding
local network quality. Note that the availability of health bits
from lower layers does not preclude setting health bits at
higher layers. For example, if the game streaming developer
implements an end-to-end latency check, this would still be
useful information even if the same information is available
at lower layers. This redundant information can help localize
errors if health bits at different layers disagree on the health
of the system.
A useful heuristic is that an element should emit health

bits whenever a significant state change occurs; e.g., a net-
work switch might emit health bits when its queue length
passes a configured threshold and when the queue length
drops below a threshold, or perhaps whenever it sets the
ECN bit. Further, an element should also emit health bits
about its observations of its neighbor elements. This is im-
portant because an element may not itself be aware that it
is responsible for a fault. For example, an element could be
using an abnormally high amount of CPU cycles without
knowing it, and the operating system of the node (itself an
element) could emit bits indicating the element’s unexpected
behavior.
The element developer must set health bits roughly pro-

portional to the severity of any error it might be experienc-
ing. The element developer decides both this severity value
and also when to emit health bits with the goal to produce
them in a way that would most help subsequent localization.
Service and domain administrators must decide how much
health bit history they are willing to store depending on the
how the elements in their domain tend to emit bits.
WTF’s design must account for the possibility that the

mechanism to collect or emit health bits could itself fail. Thus,
we require that elements replicate their health bit output to
their neighbors for fault tolerance. Alternately, a domain

The Case for an Internet Primitive for Fault Localization HotNets ’22, November 14–15, 2022, Austin, TX, USA

could provide a logically centralized and fault-tolerant data-
base to store health bit histories for all elements in that
domain. While an element may not know its neighbors, it
can attempt to discover them locally. One possible discovery
mechanism is IP anycast, with which multiple nodes adver-
tise the same IP address and the network forwards packets
destined to the closest node with that address. A domain
supporting WTF would forward a packet for this anycast IP
to a node that can store health bits in a fault-tolerant way. If
the element is in a domain that does not support WTF, the
health bits would instead be delivered to the nearest domain
with WTF support.

WTF’s health bit emissions also provide an additional
mechanism for detecting problems and initiating localiza-
tion. When an element that is responsible for replicating a
neighbor’s health bits does not receive data to be replicated
for a bit, it can deduce that either its neighbor has failed
or is unable to communicate with it. For some applications,
e.g., email (where users may not directly observe problems
for some time after they occur) using such a mechanism is
necessary to ensure that localization is initiated before trace
data related to the problem has been lost.

4.2 Scoping Health Bits
When an application problem occurs, WTF must determine
the problem’s scope. Recall that the scope is the set of health
bits that are relevant to the problem. Thus, WTF must deter-
mine the set of elements that could have caused the appli-
cation problem. Because this can be difficult to determine,
we allow for false positives, which cause the returned scope
to be larger than the true scope. Of course, returning too
large a scope would add noise and frustrate the localization
algorithm’s efforts.

WTF’s scoping mechanism should additionally be:

• Decentralized, so that domains can control what infor-
mation to share with WTF.

• Incrementally deployable and fault tolerant, so that
WTF can collect relevant health bits even if only a
small fraction of elements participate, or similarly if
many elements fail and are unable to return health
bits.

• Efficient, with manageable network and storage re-
quirements.

To perform this task, we envisionWTF will be most useful
in conjunction with a tracing mechanism, though we don’t
mandate the use of tracing forWTF to be usable. The element
that notices the application problem will trigger a tracing
mechanism and analyze the resulting scope (§4.3). The trac-
ing mechanism recursively queries neighboring elements,
nodes, and domains to gather their health bit histories. To
allow nodes to compute scope, this request contains identify-
ing application information such as IP addresses, geographic
location, application name, and other application-level client

identifiers.2 Domains could record some of these features
with each health bit and match on them when the query
comes. One such example matching rule might be “match
if the IP address falls within this subnet, or the app-level
client identifier matches”. The ability to use identifiers from
different layers allows elements at any layer and any amount
of visibility to participate in the protocol. As a last resort,
elements can add a health bit that matches with all queries
and include it in all scope queries, but this risks spuriously
expanding the scope.
We note that this mechanism is opt-in. Domains can, for

example, obscure details about their internal structure but
still participate in WTF by responding to scoping queries
with health bits for the domain overall (perhaps by issuing a
domain-internal WTF query), while suppressing health bits
from the component elements.

4.3 Using Health Bits to Localize Faults
Once an element has obtained the health bits relevant to
a given application problem, how should it go about local-
izing the fault? Here we propose key considerations for a
localization algorithm, leaving the development of specific
algorithms and their evaluation to future work:
(1) Severity: an emitted health bit that indicates a higher

severity is more suspicious (i.e., more likely to have
caused the fault) than one with a lower severity level.

(2) Recency: a more recently emitted health bit is more
suspicious than an older one.

(3) Comparison to counterfactual: if an element’s health
bit history diverges from its history in cases where no
fault is known to have occurred, we consider it to be
more suspicious.

Of course, heuristics are fallible; there can be cases where
they falsely indicate an element is suspicious. For this reason,
we cannot prioritize the use of any one heuristic over another.
Instead, we believe that approaches that combine the results
of multiple heuristics (e.g., approaches where we pick the
union of all elements suspected by a set of heuristics or
where we only pick elements suspected by a majority) will
yield better localization.
Additionally, elements and applications can define their

own localization functions which take the element-wise se-
quence of health bits as input. This might be useful if el-
ements can utilize domain-specific knowledge about their
application’s topology of elements to implement additional
heuristics. For example, if a given element is known to be a
critical element of the application, a localization algorithm
could check that element for indications of faults before any
others.

5 RELATEDWORK
Fault localization in distributed systems has been studied
extensively. However, these prior approaches have not aimed

2To avoid the need for universal agreement, features should match only on
application characteristics knowable to all elements.

HotNets ’22, November 14–15, 2022, Austin, TX, USA Sussman et al.

to be cross-layer, cross-domain, or cross-application. They
instead aim to localize problems within a single layer (often
application code), require application integration, and have
much more semantic information about the application.

Distributed Tracing. Many distributed applications collect
request traces and use these traces for bug localization. These
applications rely on tools such as Dapper [7], Zipkin [23],
Jaeger [11], and OpenTelemetry [3] to collect request traces.
These tools extend techniques proposed by X-Trace [6] and
subsequent projects [5, 14, 16, 17, 19–21, 25]. They log a
causally-ordered trace by following a request through appli-
cation components and provide tools to centrally aggregate,
analyze, and localize bugs from these logs.

Internet-scale Debugging.Windows Error Reporting [8]
uses error statistics to localize cross-application bugs that
were otherwise invisible at small scales. BlameIt [12], Secure
Packet Provenance [4], and Packet Obituaries [1] identify
and localize faults across network domains. BlameIt relies
on measurements from hosts as well as active probing to
localize instances of high latency to “cloud, middle, or client”.
Secure Packet Provenance proposes a cross-domain header
protocol used to share and collect telemetry between differ-
ent networks. Finally, the Packet Obituaries proposal sought
to provide hosts with information about where their packets
were dropped.

Network Monitoring. NetPoirot [2], Pingmesh [10], and
TRat [30] perform network monitoring and debugging
tasks using information from end-hosts. Marple [22], Univ-
Mon [18], and OpenSketch [29] provide network developers
with increased visibility into their networks by taking advan-
tage of advances in programmable switches. These systems
are promising sources to draw from when setting health bits.

Cross-layer Insights. A few systems have attempted to
combine insights from multiple layers to localize applica-
tion problems. WhyHigh [15] used active probes as well as
BGP information to diagnose latency spikes. More recently,
Sage [28] usesmachine learning to correlate low-level system
performance information with problems in microservices
within a datacenter. This approach indicates that localization
algorithms will be able to similarly draw useful conclusions
from health bits.

6 DISCUSSION AND CONCLUSION
WTF proposes a non-traditional systems approach (but a
traditional Internet approach) for building a fault localiza-
tion mechanism for large-scale applications. Conventional
wisdom dictates that to be useful, a system must be precisely
specified, i.e., the developer must carefully define its inputs
and assumptions, and use algorithms that guarantee cor-
rectness as long as all inputs are correctly provided and all
assumptions hold. Our work builds on the observation that
well-specified systems are hard, if not impossible, to deploy
in environments made up of components managed and built

by multiple independent entities. This has been the case
for the Internet, where coordinating protocol deployments
(through flag days or other means) has been impossible for
decades, and therefore systems have been designed to rely
on loose specifications and assume nothing about how the
information between components is computed. Because net-
worked applications often span multiple domains and layers,
and are built from many thousands of components, they re-
semble smaller versions of the Internet; thus, the philosophy
underlying the design and deployment of Internet compo-
nents may provide useful insights for fault localization.
We conclude with a brief discussion of some open ques-

tions for WTF.
Incentives. One concern for WTF’s deployment prospects
is that while WTF itself is merely a system for collecting and
analyzing health-bits, element developers might prefer to
avoid sharing the health status of their systems to avoid be-
ing assigned culpability for faults they report. However, we
note that the reverse is equally true; WTF can help element
developers avoid spurious claims of faults when their ele-
ment does not malfunction. Further, because of our choice of
a loosely-defined health-bit specification, operators can also
choose the granularity of their health-bits to mitigate privacy
or security concerns. For example, domain administrators
who are unwilling to reveal their network topologies can
aggregate health-bits across multiple nodes in the domain
so they appear to be emitted by a single node.
Incremental Deployment. While localization is most use-
ful when all elements involved in a service (including net-
work elements that connect the various participants) support
WTF, our proposal is beneficial even when only a subset of
elements report health-bits. For example, consider amicroser-
vice application written by multiple teams within a single
enterprise. This enterprise could adoptWTF to localize faults
within the microservice application to reduce the amount
of cross-team coordination required during debugging. Fur-
ther, even in environments with elements provided by fully
uncoordinated elements, health-bits from the subset of ele-
ments that report them narrow the scope of fault localization
queries.

We believeWTF’s adoption will be driven by demand from
users and application developers/operators; currently, when
application problems emerge, neither users nor application
operators can localize the problem. For users, this means
that they do not know who to report problems to and thus
cannot quickly resolve them, while for developers this leads
to low user satisfaction and falling revenues [12].

Overall, we believe that by adopting the concept of health-
bits and specifying very little, WTF provides a design that is
both useful for applications that span domains and layers,
and is deployable incrementally.
Acknowledgements. This work is supported by NSF grants
1817115 and 2145471. We thank Wen Zhang for comments
on drafts of this paper.

The Case for an Internet Primitive for Fault Localization HotNets ’22, November 14–15, 2022, Austin, TX, USA

REFERENCES
[1] Katerina Argyraki, Petros Maniatis, David Cheriton, and Scott Shenker.

2004. Providing Packet Obituaries. In HotNets. 5
[2] Behnaz Arzani, Selim Ciraci, Boon Thau Loo, Assaf Schuster, and Geoff

Outhred. 2016. Taking the Blame Game out of Data Centers Operations
with NetPoirot. In SIGCOMM. https://doi.org/10.1145/2934872.2934884
5

[3] The OpenTelemetry Authors. 2022. OpenTelemetry. https://
opentelemetry.io/. (2022). 5

[4] Ang Chen, Andreas Haeberlen, Wenchao Zhou, and Boon Thau Loo.
2017. One Primitive to Diagnose Them All: Architectural Support
for Internet Diagnostics. In EuroSys. https://doi.org/10.1145/3064176.
3064212 2.1, 5

[5] Rodrigo Fonseca and Jonathan Mace. 2015. We are Losing Track: A
Case for Causal Metadata in Distributed Systems. In HPTS. 5

[6] Rodrigo Fonseca, George Porter, Randy H. Katz, Scott Shenker, and
Ion Stoica. 2007. X-Trace: A Pervasive Network Tracing Framework.
In NSDI. 1, 2.1, 5

[7] Mojgan Ghasemi, Theophilus Benson, and Jennifer Rexford. 2017.
Dapper: Data Plane Performance Diagnosis of TCP. In SoSR. https:
//doi.org/10.1145/3050220.3050228 2.1, 5

[8] Kirk Glerum, Kinshuman Kinshumann, Steve Greenberg, Gabriel Aul,
Vince Orgovan, Greg Nichols, David Grant, Gretchen Loihle, and Galen
Hunt. 2009. Debugging in the (Very) Large: Ten Years of Implementa-
tion and Experience. In SOSP. https://doi.org/10.1145/1629575.1629586
5

[9] Google. 2022. gRPC: A high performance, open-source, universal RPC
framework. https://grpc.io. (2022). 2.1

[10] Chuanxiong Guo, Lihua Yuan, Dong Xiang, Yingnong Dang, Ray
Huang, Dave Maltz, Zhaoyi Liu, Vin Wang, Bin Pang, Hua Chen,
Zhi-Wei Lin, and Varugis Kurien. 2015. Pingmesh: A Large-Scale Sys-
tem for Data Center Network Latency Measurement and Analysis. In
SIGCOMM. https://doi.org/10.1145/2785956.2787496 5

[11] jaeger 2022. Jaeger: open source, end-to-end distributed tracing. https:
//www.jaegertracing.io/. (2022). 2.1, 5

[12] Yuchen Jin, Sundararajan Renganathan, Ganesh Ananthanarayanan,
Junchen Jiang, Venkata N. Padmanabhan, Manuel Schroder, Matt
Calder, and Arvind Krishnamurthy. 2019. Zooming in on Wide-
Area Latencies to a Global Cloud Provider. In SIGCOMM. https:
//doi.org/10.1145/3341302.3342073 2.1, 5, 6

[13] Theo Julienne. 2019. Debugging network stalls on Kuber-
netes. https://github.blog/2019-11-21-debugging-network-stalls-on-
kubernetes/. (2019). 2.1

[14] Jonathan Kaldor, Jonathan Mace, Michał Bejda, Edison Gao, Wiktor
Kuropatwa, Joe O’Neill, Kian Win Ong, Bill Schaller, Pingjia Shan,
Brendan Viscomi, Vinod Venkataraman, Kaushik Veeraraghavan, and
Yee Jiun Song. 2017. Canopy: An End-to-End Performance Tracing And
Analysis System. In SOSP. https://doi.org/10.1145/3132747.3132749 5

[15] Rupa Krishnan, Harsha V. Madhyastha, Sridhar Srinivasan, Sushant
Jain, Arvind Krishnamurthy, Thomas Anderson, and Jie Gao. 2009.
Moving beyond End-to-End Path Information to Optimize CDN Per-
formance. In IMC. https://doi.org/10.1145/1644893.1644917 5

[16] Pedro Las-Casas, Jonathan Mace, Dorgival Guedes, and Rodrigo Fon-
seca. 2018. Weighted Sampling of Execution Traces: Capturing More
Needles and Less Hay. In SoCC. https://doi.org/10.1145/3267809.
3267841 5

[17] Pedro Las-Casas, Giorgi Papakerashvili, Vaastav Anand, and Jonathan
Mace. 2019. Sifter: Scalable Sampling for Distributed Traces, with-
out Feature Engineering. In SoCC. https://doi.org/10.1145/3357223.
3362736 5

[18] Zaoxing Liu, Antonis Manousis, Gregory Vorsanger, Vyas Sekar, and
Vladimir Braverman. 2016. One Sketch to Rule Them All: Rethinking
Network Flow Monitoring with UnivMon. In SIGCOMM. https://doi.
org/10.1145/2934872.2934906 2.1, 5

[19] Jonathan Mace. 2018. A Universal Architecture for Cross-Cutting Tools
in Distributed Systems. Ph.D. Dissertation. Brown University. 5

[20] Jonathan Mace and Rodrigo Fonseca. 2018. Universal Context Prop-
agation for Distributed System Instrumentation. In EuroSys. https:
//doi.org/10.1145/3190508.3190526

[21] JonathanMace, Ryan Roelke, and Rodrigo Fonseca. 2015. Pivot Tracing:
Dynamic Causal Monitoring for Distributed Systems. In SOSP. https:
//doi.org/10.1145/2815400.2815415 5

[22] Srinivas Narayana, Anirudh Sivaraman, Vikram Nathan, Prateesh
Goyal, Venkat Arun, Mohammad Alizadeh, Vimalkumar Jeyakumar,
and Changhoon Kim. 2017. Language-Directed Hardware Design for
Network Performance Monitoring. In SIGCOMM. https://doi.org/10.
1145/3098822.3098829 2.1, 5

[23] OpenZipkin. 2022. OpenZipkin: A Distributed Tracing System. https:
//zipkin.io/. (2022). 2.1, 5

[24] Riot Games. 2022. Riot Games Tech Blog: Artificial Latency for Remote
Competitors. https://lolesports.com/article/riot-games-tech-blog-
-artificial-latency-for-remote-competitors/blt44154a33b5d5a616.
(2022). 2.2

[25] Raja R. Sambasivan, Ilari Shafer, JonathanMace, Benjamin H. Sigelman,
Rodrigo Fonseca, and Gregory R. Ganger. 2016. Principled Workflow-
Centric Tracing of Distributed Systems. In SoCC. https://doi.org/10.
1145/2987550.2987568 5

[26] Thrift [n. d.]. Apache Thrift. https://thrift.apache.org/. ([n. d.]). 2.1
[27] Jason Warner. 2018. October 21 post-incident analysis. https://github.

blog/2018-10-30-oct21-post-incident-analysis/. (2018). 2.1
[28] Jane Yen, Tamás Lévai, Qinyuan Ye, Xiang Ren, Ramesh Govindan, and

Barath Raghavan. 2021. Semi-Automated Protocol Disambiguation
and Code Generation. In SIGCOMM. https://doi.org/10.1145/3452296.
3472910 5

[29] Minlan Yu, Lavanya Jose, and Rui Miao. 2013. Software Defined Traffic
Measurement with OpenSketch. In NSDI. 5

[30] Yin Zhang, Lee Breslau, Vern Paxson, and Scott Shenker. 2002. On the
Characteristics and Origins of Internet Flow Rates. SIGCOMM CCR
32, 4 (aug 2002). https://doi.org/10.1145/964725.633055 5

https://doi.org/10.1145/2934872.2934884
https://opentelemetry.io/
https://opentelemetry.io/
https://doi.org/10.1145/3064176.3064212
https://doi.org/10.1145/3064176.3064212
https://doi.org/10.1145/3050220.3050228
https://doi.org/10.1145/3050220.3050228
https://doi.org/10.1145/1629575.1629586
https://grpc.io
https://doi.org/10.1145/2785956.2787496
https://www.jaegertracing.io/
https://www.jaegertracing.io/
https://doi.org/10.1145/3341302.3342073
https://doi.org/10.1145/3341302.3342073
https://github.blog/2019-11-21-debugging-network-stalls-on-kubernetes/
https://github.blog/2019-11-21-debugging-network-stalls-on-kubernetes/
https://doi.org/10.1145/3132747.3132749
https://doi.org/10.1145/1644893.1644917
https://doi.org/10.1145/3267809.3267841
https://doi.org/10.1145/3267809.3267841
https://doi.org/10.1145/3357223.3362736
https://doi.org/10.1145/3357223.3362736
https://doi.org/10.1145/2934872.2934906
https://doi.org/10.1145/2934872.2934906
https://doi.org/10.1145/3190508.3190526
https://doi.org/10.1145/3190508.3190526
https://doi.org/10.1145/2815400.2815415
https://doi.org/10.1145/2815400.2815415
https://doi.org/10.1145/3098822.3098829
https://doi.org/10.1145/3098822.3098829
https://zipkin.io/
https://zipkin.io/
https://lolesports.com/article/riot-games-tech-blog--artificial-latency-for-remote-competitors/blt44154a33b5d5a616
https://lolesports.com/article/riot-games-tech-blog--artificial-latency-for-remote-competitors/blt44154a33b5d5a616
https://doi.org/10.1145/2987550.2987568
https://doi.org/10.1145/2987550.2987568
https://thrift.apache.org/
https://github.blog/2018-10-30-oct21-post-incident-analysis/
https://github.blog/2018-10-30-oct21-post-incident-analysis/
https://doi.org/10.1145/3452296.3472910
https://doi.org/10.1145/3452296.3472910
https://doi.org/10.1145/964725.633055

	Abstract
	1 Introduction
	2 Background
	2.1 Localization Today
	2.2 Example

	3 WTF Overview
	3.1 Mechanisms
	3.2 Design Principles and Implications

	4 Design
	4.1 Recording Element Health
	4.2 Scoping Health Bits
	4.3 Using Health Bits to Localize Faults

	5 Related Work
	6 Discussion and Conclusion
	References

